
Machine Learning with R
François de Ryckel

2017-11-19

2

Contents

1 Prerequisites 9
1.1 Pre-requisite and conventions . 9
1.2 Organization . 10

2 Tests and inferences 11
2.1 Assumption of normality . 11
2.2 T-tests . 13

3 Multiple Linear Regression 17
3.1 Single variable regression . 17
3.2 Multi-variables regression . 21

4 Logistic Regression 25
4.1 Introduction . 25
4.2 The logistic equation. 25
4.3 Performance of Logistic Regression Model 26
4.4 Setting up . 27
4.5 Example 1 - Graduate Admission . 27
4.6 Example 2 - Diabetes . 37
4.7 References . 47

5 Softmax and multinomial regressions 49
5.1 Multinomial Logistic Regression . 49
5.2 References . 49

6 KNN - K Nearest Neighbour 51
6.1 Example 1. Prostate Cancer dataset . 53
6.2 Example 2. Wine dataset . 57
6.3 References . 61

7 Principal Component Analysis 63
7.1 PCA on an easy example. 64
7.2 References. 68

8 Trees, Random forests and Classification 69

3

4 CONTENTS

8.1 Introduction . 69
8.2 First example. 70
8.3 Second Example. 72
8.4 How does a tree decide where to split? . 77
8.5 Third example. 77
8.6 References . 78

9 Model Evaluation 79
9.1 Biais variance tradeoff . 79
9.2 Bagging . 79
9.3 Cross Validation . 79

10 Case Study - Predicting Survivalship on the Titanic 81
10.1 Import the data. 81
10.2 Tidy the data . 82
10.3 Understand the data . 82
10.4 A. Visualize with cabins. 89
10.5 B. Transform Dealing with missing data. 91
10.6 References. 97

11 Case Study - Mushrooms Classification 99
11.1 Import the data . 99
11.2 Tidy the data . 100
11.3 Understand the data . 102
11.4 Communication . 118

12 Case Study - Wisconsin Breast Cancer 119
12.1 Import the data . 119
12.2 Tidy the data . 120
12.3 Understand the data . 121
12.4 References . 141

List of Tables

5

6 LIST OF TABLES

List of Figures

9.1 Biais Variance tradeoff . 80

7

8 LIST OF FIGURES

Chapter 1

Prerequisites

Welcome to my reference book in machine learning. I have tried to put in it all the tricks,
tips, how-to, must-know, etc. I consult it almost everytime I embark on data science project.
It is impossible to remember all the coding practices, hence this my data science in R bible.
This book is basically a record of my journey in data analysis. So often, I spend time reading
articles, blog posts, etc. and wish I could put all the things I’m learning in a central location.
It is a living document with constant additions.

So this book is a compilation of the techniques I’ve learned along the way. Most of what I
have learned is through blog posts, stack overflow questions, etc. I am not taking any credit
for all the great ideas, examples, graphs, etc. in this web book. I do take responsibility
for all mistakes, typos, unclear explanations, poor labeling / presentation of graphs. If
you find anything that require improvement, I would be grateful if you would let me know:
f.deryckel@gmail.com or even better post an issue on github here.

I am assuming that you are already somehow familiar with:

• the math behind most algorithms. This is not a math book.

• the basics of how to use R. This is not a computer science book nor an introductory
R book.

I wish you loads of fun in your data science journey, and I hope that this book can contribute
positively to your experience.

1.1 Pre-requisite and conventions

As much as it makes sense, we will use the tidyverse and the conventions of tidy data
throughout our journey.
Besides the hype surrounding the tidyverse, there is a couple reasons for us to stick with it:

• learning a language is hard on itself. If we can be proficient and creative with

9

mailto:f.deryckel@gmail.com
https://github.com/fderyckel/machinelearningwithr

10 CHAPTER 1. PREREQUISITES

one, it will be much better. All the packages from the tidyverse, might not al-
ways be the best ones (more efficient, more elegant), but I’m happy to learn inside
out one opinionated framework in order to be able to apply it effortlessly and creatively.

• Because many of the tidyverse packages do their background work in C++, they are
usually pretty efficient in the way they work.

library(tidyverse)

Here are some conventions we will be using throughout the book.

• df denotes a data frame. Usually the data frame from a raw set of data

• We’ll use df2, df3, etc. for other, “cleaner” versions of that raw data set

• model_pca_xxxx, model_lr_xxxx denotes models. The second part denotes the
algorithm.

• predict_svm_xxxx or predict_mlr_xxxx denotes the outcome of applying a model
on a set of independent variables.

1.2 Organization

The first part of the book is more about the nitty-gritty of each machine learning algorithm.
We do not really go into the depth of how they work and why they work the way they do.
Instead it is really on how to leveraged R and various R libraries to use the ML algorithms.
The second part of the book is about various case studies. Most of them come either from
the UCI Machine learning repository or Kaggle.

The two parts can (and maybe should?) be read concommitenly. We use machine learning
to model real-life situation, so I see it as essential to go from the algortihms and theory to
the case study and practical applications.

So in the first part, we start by talking about inference and tests with the Chapter 2. We
then go onto the various linear regression technique with the Chapter 3. Chapter 4 is about
logisitic regression and the various way to evaluate a logisitic model. We then go onto the
K Nearest Neighbour with 6.

The case studies have been put by order of skills required to approach the practical situation.

http://archive.ics.uci.edu/ml/index.php
http://kaggle.com

Chapter 2

Tests and inferences

Definitely the first thing to be familiar with while doing machine learning works is the basic
of statistical inferences.
In this chapter, we go over some of these important concepts and the r-ways to do them.

Let’s get started.

2.1 Assumption of normality

Copied from here

Many of the statistical procedures including correlation, regression, t tests, and analysis
of variance, namely parametric tests, are based on the assumption that the data follows
a normal distribution or a Gaussian distribution (after Johann Karl Gauss, 1777–1855);
that is, it is assumed that the populations from which the samples are taken are normally
distributed. The assumption of normality is especially critical when constructing reference
intervals for variables. Normality and other assumptions should be taken seriously, for when
these assumptions do not hold, it is impossible to draw accurate and reliable conclusions
about reality.

With large enough sample sizes (> 30 or 40), the violation of the normality assumption
should not cause major problems; this implies that we can use parametric procedures even
when the data are not normally distributed (8). If we have samples consisting of hundreds of
observations, we can ignore the distribution of the data (3). According to the central limit
theorem,

• if the sample data are approximately normal then the sampling distribution too will
be normal;

• in large samples (> 30 or 40), the sampling distribution tends to be normal, regardless
of the shape of the data

• means of random samples from any distribution will themselves have normal distribu-
tion.

11

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693611/

12 CHAPTER 2. TESTS AND INFERENCES

Although true normality is considered to be a myth, we can look for normality visually
by using normal plots or by significance tests, that is, comparing the sample distribution
to a normal one. It is important to ascertain whether data show a serious deviation from
normality.

2.1.1 Visual check of normality

Visual inspection of the distribution may be used for assessing normality, although this ap-
proach is usually unreliable and does not guarantee that the distribution is normal. However,
when data are presented visually, readers of an article can judge the distribution assumption
by themselves. The frequency distribution (histogram), stem-and-leaf plot, boxplot, P-P
plot (probability-probability plot), and Q-Q plot (quantile-quantile plot) are used for check-
ing normality visually. The frequency distribution that plots the observed values against
their frequency, provides both a visual judgment about whether the distribution is bell
shaped and insights about gaps in the data and outliers outlying values. A Q-Q plot is very
similar to the P-P plot except that it plots the quantiles (values that split a data set into
equal portions) of the data set instead of every individual score in the data. Moreover, the
Q-Q plots are easier to interpret in case of large sample sizes. The boxplot shows the median
as a horizontal line inside the box and the interquartile range (range between the 25 th to
75 th percentiles) as the length of the box. The whiskers (line extending from the top and
bottom of the box) represent the minimum and maximum values when they are within 1.5
times the interquartile range from either end of the box. Scores greater than 1.5 times the
interquartile range are out of the boxplot and are considered as outliers, and those greater
than 3 times the interquartile range are extreme outliers. A boxplot that is symmetric with
the median line at approximately the center of the box and with symmetric whiskers that
are slightly longer than the subsections of the center box suggests that the data may have
come from a normal distribution.

2.1.2 Normality tests

The various normality tests compare the scores in the sample to a normally distributed set
of scores with the same mean and standard deviation; the null hypothesis is that “sample
distribution is normal.” If the test is significant, the distribution is non-normal. For small
sample sizes, normality tests have little power to reject the null hypothesis and therefore
small samples most often pass normality tests. For large sample sizes, significant results
would be derived even in the case of a small deviation from normality, although this small
deviation will not affect the results of a parametric test. It has been reported that the K-
S test has low power and it should not be seriously considered for testing normality (11).
Moreover, it is not recommended when parameters are estimated from the data, regardless
of sample size (12).

The Shapiro-Wilk test is based on the correlation between the data and the corresponding
normal scores and provides better power than the K-S test even after the Lilliefors correction.

2.2. T-TESTS 13

Power is the most frequent measure of the value of a test for normality. Some researchers
recommend the Shapiro-Wilk test as the best choice for testing the normality of data.

2.2 T-tests

The independent t test is used to test if there is any statistically significant difference
between two means. Use of an independent t test requires several assumptions to be satisfied.

1. The variables are continuous and independent
2. The variables are normally distributed
3. The variances in each group are equal

When these assumptions are satisfied the results of the t test are valid. Otherwise they are
invalid and you need to use a non-parametric test. When data is not normally distributed
you can apply transformations to make it normally distributed.

Using the mtcars data set, we check if there are any difference in mile per gallon (mpg) for
each of the automatic and manual group.

Check the data and mark as factor the driving system.
library(tidyverse)
glimpse(mtcars)

Observations: 32
Variables: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19....
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, ...
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 1...
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, ...
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.9...
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3...
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 2...
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, ...
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, ...
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, ...
df <- mtcars
df$am <- factor(df$am, labels = c("automatic", "manual"))
df2 <- df %>% select(mpg, am)
glimpse(df2)

Observations: 32
Variables: 2
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2...
$ am <fctr> manual, manual, manual, automatic, automatic, automatic, ...

14 CHAPTER 2. TESTS AND INFERENCES

Generate descriptive statistic for each group.
df2 %>% group_by(am) %>%

summarise(mean = mean(mpg), minimum = min(mpg), maximum = max(mpg))

A tibble: 2 x 4
am mean minimum maximum
<fctr> <dbl> <dbl> <dbl>
1 automatic 17.14737 10.4 24.4
2 manual 24.39231 15.0 33.9

Generate boxplot for each group
ggplot(df2, aes(x = am, y = mpg)) +

geom_boxplot(fill = c("dodgerblue3", "goldenrod2")) +
labs(title = "Achieved milage for Automatic / Manual cars",

x = "Type of car")

10

15

20

25

30

35

automatic manual

Type of car

m
pg

Achieved milage for Automatic / Manual cars

Test the normality of the data.
To do so, we can use the Shapiro Wilk Normality Test
df2 %>% group_by(am) %>%

summarise(shaprio_test = shapiro.test(mpg)$p.value)

A tibble: 2 x 2

2.2. T-TESTS 15

am shaprio_test
<fctr> <dbl>
1 automatic 0.8987358
2 manual 0.5362729

There is no evidence of departure from normality.

Test the equal variance in each group.
To do so, we use the levene.test from the car package.
car::leveneTest(mpg ~ am, center = mean, data = df2)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 1 5.921 0.02113 *
30

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because the variance in the 2 groups is not equal, we have to transform the data.

Apply a log transformation to stabilize the variance.
log_transformed_mpg = log(df2$mpg)

Now we can finally apply the t test to our data.
t.test(log_transformed_mpg ~ df2$am, var.equal = TRUE)

##
Two Sample t-test
##
data: log_transformed_mpg by df2$am
t = -3.9087, df = 30, p-value = 0.0004905
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5277597 -0.1655209
sample estimates:
mean in group automatic mean in group manual
2.816692 3.163332

Interpret the results.

• Manual cars have on average a higher mileage per Gallon (24 mpg) compared to
Automatic (17 mpg).

• The box plot did not reveal the presence of outliers
• The Shapiro-Wilk normality test did not show any deviation from normality in the data

16 CHAPTER 2. TESTS AND INFERENCES

• The Levene Test showed difference in the variance in the 2 group. We addressed that
by log transforming the data

• The t test show a significant difference in the mean of miles per gallon from automatic
and manual cars.

Chapter 3

Multiple Linear Regression

3.1 Single variable regression

The general equation for a linear regression model

yi = β0 + β1x
i + ϵi

where:

• yi is the ith observation of the dependent variable
• β0 is the intercept coefficient
• β1 is the regression coefficient for the dependent variable
• xi is the ith observation of the independent variable
• ϵi is the error term for the ith observation. It basically is the difference in therm of y

between the observed value and the estimated value. It is also called the residuals. A
good model minimize these errors. 1

Some ways to assess how good our model is to:

1. compute the SSE (the sum of squared error)
• SSE = (ϵ1)2 + (ϵ2)2 + . . . + (ϵn)2 = ∑N

i=1 ϵi

• A good model will minimize SSE
• problem: SSE is dependent of N. SSE will naturally increase as N increase

2. compute the RMSE (the root mean squared error)
• RMSE =

√
SSE

N

• Also a good model will minimize SSE
• It depends of the unit of the dependent variable. It is like the average error the

model is making (in term of the unit of the dependent variable)
3. compute R2

• It compare the models to a baseline model
1Remember that the error term, ϵi, in the simple linear regression model is independent of x, and is

normally distributed, with zero mean and constant variance.

17

18 CHAPTER 3. MULTIPLE LINEAR REGRESSION

• R2 is unitless and universaly interpretable
• SST is the sum of the squared of the difference between the observed value and

the mean of all the observed value
• R2 = 1 − SSE

SST

3.1.1 First example. Predicting wine price

The wine.csv file is used.

Let’s load it and then have a quick look at its structure.
library(tidyverse)
library(skimr)
df = read_csv("dataset/Wine.csv")
skim(df)

Skim summary statistics
n obs: 25
n variables: 7
##
Variable type: integer
var missing complete n mean sd min p25 median p75
1 Age 0 25 25 17.2 7.69 5 11 17 23
2 HarvestRain 0 25 25 148.56 74.42 38 89 130 187
3 WinterRain 0 25 25 605.28 132.28 376 536 600 697
4 Year 0 25 25 1965.8 7.69 1952 1960 1966 1972
max hist
1 31 ��������
2 292 ��������
3 830 ��������
4 1978 ��������
##
Variable type: numeric
var missing complete n mean sd min p25
1 AGST 0 25 25 16.51 0.68 14.98 16.2
2 FrancePop 0 25 25 49694.44 3665.27 43183.57 46584
3 Price 0 25 25 7.07 0.65 6.2 6.52
median p75 max hist
1 16.53 17.07 17.65 ��������
2 50254.97 52894.18 54602.19 ��������
3 7.12 7.5 8.49 ��������

We use the lm function to find our linear regression model. We use AGST as the independent
variable while the price is the dependent variable.

3.1. SINGLE VARIABLE REGRESSION 19

model_lm_df = lm(Price ~ AGST, data = df)
summary(model_lm_df)

##
Call:
lm(formula = Price ~ AGST, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-0.78450 -0.23882 -0.03727 0.38992 0.90318
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.4178 2.4935 -1.371 0.183710
AGST 0.6351 0.1509 4.208 0.000335 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4993 on 23 degrees of freedom
Multiple R-squared: 0.435, Adjusted R-squared: 0.4105
F-statistic: 17.71 on 1 and 23 DF, p-value: 0.000335

The summary function applied on the model is giving us a bunch of important information

• the stars next to the predictor variable indicated how significant the variable is for our
regression model

• it also gives us the value of the R coefficient

We could have calculated the R value ourselves:
SSE = sum(model_lm_df$residuals^2)
SST = sum((df$Price - mean(df$Price))^2)
r_squared = 1 - SSE/SST
r_squared

[1] 0.4350232

We can now plot the observations and the line of regression; and see how the linear model
fits the data.
ggplot(df, aes(AGST, Price)) +

geom_point(shape = 1, col = "blue") +
geom_smooth(method = "lm", col = "red")

20 CHAPTER 3. MULTIPLE LINEAR REGRESSION

6

7

8

15 16 17

AGST

P
ric

e

By default, the geom_smooth() will use a 95% confidence interval (which is the grey-er area
on the graph). There are 95% chance the line of regression will be within that zone for the
whole population.

It is always nice to see how our residuals are distributed.
We use the ggplot2 library and the fortify function which transform the summary(model1)
into a data frame usable for plotting.
model1 <- fortify(model_lm_df)
p <- ggplot(model1, aes(.fitted, .resid)) + geom_point()
p <- p + geom_hline(yintercept = 0, col = "red", linetype = "dashed")
p <- p + xlab("Fitted values") + ylab("Residuals") + ggtitle("Plot of the residuals in function of the fitted values")
p

3.2. MULTI-VARIABLES REGRESSION 21

−0.5

0.0

0.5

6.5 7.0 7.5

Fitted values

R
es

id
ua

ls
Plot of the residuals in function of the fitted values

3.2 Multi-variables regression

Instead of just considering one variable as predictor, we’ll add a few more variables to our
model with the idea to increase its predictive ability.

We have to be cautious in adding more variables. Too many variable might give a high R2

on our training data, but this not be the case as we switch to our testing data.

The general equations can be expressed as

yi = β0 + β1x
i
1 + β2x

i
2 + . . . + βkxi

k + ϵi

when there are k predictors variables.

There are a bit of trials and errors to make while trying to fit multiple variables into a model,
but a rule of thumb would be to include most of the variable (all these that would make
sense) and then take out the ones that are not very significant using the summary(modelx)

3.2.1 First example. Predicting wine price

We continue here with the same dataset, wine.csv.
First, we can see how each variable is correlated with each other ones, using

22 CHAPTER 3. MULTIPLE LINEAR REGRESSION

cor(df)

Year Price WinterRain AGST HarvestRain
Year 1.00000000 -0.4477679 0.016970024 -0.24691585 0.02800907
Price -0.44776786 1.0000000 0.136650547 0.65956286 -0.56332190
WinterRain 0.01697002 0.1366505 1.000000000 -0.32109061 -0.27544085
AGST -0.24691585 0.6595629 -0.321090611 1.00000000 -0.06449593
HarvestRain 0.02800907 -0.5633219 -0.275440854 -0.06449593 1.00000000
Age -1.00000000 0.4477679 -0.016970024 0.24691585 -0.02800907
FrancePop 0.99448510 -0.4668616 -0.001621627 -0.25916227 0.04126439
Age FrancePop
Year -1.00000000 0.994485097
Price 0.44776786 -0.466861641
WinterRain -0.01697002 -0.001621627
AGST 0.24691585 -0.259162274
HarvestRain -0.02800907 0.041264394
Age 1.00000000 -0.994485097
FrancePop -0.99448510 1.000000000

by default, R uses the Pearson coefficient of correlation.
So let’s start by using all variables.
model2_lm_df <- lm(Price ~ Year + WinterRain + AGST + HarvestRain + Age + FrancePop, data = df)
summary(model2_lm_df)

##
Call:
lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain +
Age + FrancePop, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-0.48179 -0.24662 -0.00726 0.22012 0.51987
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.092e-01 1.467e+02 0.005 0.996194
Year -5.847e-04 7.900e-02 -0.007 0.994172
WinterRain 1.043e-03 5.310e-04 1.963 0.064416 .
AGST 6.012e-01 1.030e-01 5.836 1.27e-05 ***
HarvestRain -3.958e-03 8.751e-04 -4.523 0.000233 ***
Age NA NA NA NA
FrancePop -4.953e-05 1.667e-04 -0.297 0.769578

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

3.2. MULTI-VARIABLES REGRESSION 23

Residual standard error: 0.3019 on 19 degrees of freedom
Multiple R-squared: 0.8294, Adjusted R-squared: 0.7845
F-statistic: 18.47 on 5 and 19 DF, p-value: 1.044e-06

While doing so, we notice that the variable Age has NA (issues with missing data?) and that
the variable FrancePop isn’t very predictive of the price of wine. So we can refine our models,
by taking out these 2 variables, and as we’ll see, it won’t affect much our R2 value. Note
that with multiple variables regression, it is important to look at the Adjusted R-squared
as it take into consideration the amount of variables in the model.
model3_lm_df <- lm(Price ~ Year + WinterRain + AGST + HarvestRain, data = df)
summary(model3_lm_df)

##
Call:
lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain,
data = df)
##
Residuals:
Min 1Q Median 3Q Max
-0.45470 -0.24273 0.00752 0.19773 0.53637
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.0248601 16.4434570 2.677 0.014477 *
Year -0.0239308 0.0080969 -2.956 0.007819 **
WinterRain 0.0010755 0.0005073 2.120 0.046694 *
AGST 0.6072093 0.0987022 6.152 5.2e-06 ***
HarvestRain -0.0039715 0.0008538 -4.652 0.000154 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.295 on 20 degrees of freedom
Multiple R-squared: 0.8286, Adjusted R-squared: 0.7943
F-statistic: 24.17 on 4 and 20 DF, p-value: 2.036e-07

Although it isn’t now feasible to graph in 2D the Price in function of the other variables, we
can still graph our residuals.
model3 <- fortify(model3_lm_df)
p <- ggplot(model3, aes(.fitted, .resid)) + geom_point()
p <- p + geom_hline(yintercept = 0, col = "red", linetype = "dashed") + xlab("Fitted values")
p <- p + ylab("Residuals") + ggtitle("Plot of the residuals in function of the fitted values (multiple variables)")

24 CHAPTER 3. MULTIPLE LINEAR REGRESSION

Chapter 4

Logistic Regression

4.1 Introduction

Logistic Regression is a classification algorithm. It is used to predict a binary outcome (1
/ 0, Yes / No, True / False) given a set of independent variables. To represent binary /
categorical outcome, we use dummy variables. You can also think of logistic regression as a
special case of linear regression when the outcome variable is categorical, where we are using
log of odds as dependent variable. In simple words, it predicts the probability of occurrence
of an event by fitting data to a logit function.
Logistic Regression is part of a larger class of algorithms known as Generalized Linear Model
(glm).
Although most logisitc regression should be called binomial logistic regression, since
the variable to predict is binary, however, logistic regression can also be used to predict
a dependent variable which can assume more than 2 values. In this second case we call
the model multinomial logistic regression. A typical example for instance, would be
classifying films between “Entertaining”, “borderline” or “boring”.

4.2 The logistic equation.

The general equation of the logit model

Y = β0 + β1x1 + β2x2 + ... + βnxn

where Y is the variable to predict.
β is the coefficients of the predictors and the xi are the predictors (aka independent
variables).
In logistic regression, we are only concerned about the probability of outcome dependent
variable (success or failure). We should then rewrite our function

25

26 CHAPTER 4. LOGISTIC REGRESSION

p = e(β0+β1x1+β2x2+...+βnxn)

.
This however does not garantee to have p between 0 and 1.
Let’s then have

p = e(β0+β1x1+β2x2+...+βnxn)

e(β0+β1x1+β2x2+...+βnxn) + 1

or
p = eY

eY + 1

where p is the probability of success. With little further manipulations, we have

p

1 − p
= eY

and
log p

1 − p
= Y

If we remember what was Y, we get

log p

1 − p
= β0 + β1x1 + β2x2 + ... + βnxn

This is the equation used in Logistic Regression. Here (p/1-p) is the odd ratio. Whenever
the log of odd ratio is found to be positive, the probability of success is always more than
50%.

4.3 Performance of Logistic Regression Model

To evaluate the performance of a logistic regression model, we can consider a few metrics.

• AIC (Akaike Information Criteria) The analogous metric of adjusted R-squared
in logistic regression is AIC. AIC is the measure of fit which penalizes model for the
number of model coefficients. Therefore, we always prefer model with minimum AIC
value.

• Null Deviance and Residual Deviance Null Deviance indicates the response
predicted by a model with nothing but an intercept. Lower the value, better the
model. Residual deviance indicates the response predicted by a model on adding
independent variables. Lower the value, better the model.

4.4. SETTING UP 27

• Confusion Matrix It is nothing but a tabular representation of Actual vs Predicted
values. This helps us to find the accuracy of the model and avoid overfitting.

• We can calcualate the accuracy of our model by

TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives

• From confusion matrix, Specificity and Sensitivity can be derived as

Specificity = TrueNegatives

TrueNegative + FalsePositive

and
Sensitivity = TruePositive

TruePositive + FalseNegative

• ROC Curve Receiver Operating Characteristic(ROC) summarizes the model’s per-
formance by evaluating the trade offs between true positive rate (sensitivity) and false
positive rate(1- specificity). For plotting ROC, it is advisable to assume p > 0.5 since
we are more concerned about success rate. ROC summarizes the predictive power
for all possible values of p > 0.5. The area under curve (AUC), referred to as index
of accuracy(A) or concordance index, is a perfect performance metric for ROC curve.
Higher the area under curve, better the prediction power of the model. The ROC of a
perfect predictive model has TP equals 1 and FP equals 0. This curve will touch the
top left corner of the graph.

4.4 Setting up

As usual we will use the tidyverse and caret package
library(caret) # For confusion matrix
library(ROCR) # For the ROC curve
library(tidyverse)

We can now get straight to business and see how to model logisitc regression with R and
then have the more interesting discussion on its performance.

4.5 Example 1 - Graduate Admission

We use a dataset about factors influencing graduate admission that can be downloaded from
the UCLA Institute for Digital Research and Education

http://www.ats.ucla.edu/stat/data/binary.csv

28 CHAPTER 4. LOGISTIC REGRESSION

The dataset has 4 variables

• admit is the response variable

• gre is the result of a standardized test

• gpa is the result of the student GPA (school reported)
• rank is the type of university the student apply for (4 = Ivy League, 1 = lower level

entry U.)

Let’s have a quick look at the data and their summary. The goal is to get familiar with the
data, type of predictors (continuous, discrete, categorical, etc.)
df <- read_csv("dataset/grad_admission.csv")
glimpse(df)

Observations: 400
Variables: 4
$ admit <int> 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,...
$ gre <int> 380, 660, 800, 640, 520, 760, 560, 400, 540, 700, 800, 4...
$ gpa <dbl> 3.61, 3.67, 4.00, 3.19, 2.93, 3.00, 2.98, 3.08, 3.39, 3....
$ rank <int> 3, 3, 1, 4, 4, 2, 1, 2, 3, 2, 4, 1, 1, 2, 1, 3, 4, 3, 2,...
#Quick check to see if our response variable is balanced-ish
table(df$admit)

##
0 1
273 127

Well that’s not a very balanced response variable, although it is not hugely unbalanced either
as it can be the cases sometimes in medical research.
Two-way contingency table of categorical outcome and predictors
round(prop.table(table(df$admit, df$rank), 2), 2)

##
1 2 3 4
0 0.46 0.64 0.77 0.82
1 0.54 0.36 0.23 0.18

It seems about right … most students applying to Ivy Leagues graduate programs are not
being admitted.

Before we can run our model, let’s transform the rank explanatory variable to a factor.
df2 <- df
df2$rank <- factor(df2$rank)

Run the model

4.5. EXAMPLE 1 - GRADUATE ADMISSION 29

model_lgr_df2 <- glm(admit ~ ., data = df2, family = "binomial")
summary(model_lgr_df2)

##
Call:
glm(formula = admit ~ ., family = "binomial", data = df2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6268 -0.8662 -0.6388 1.1490 2.0790
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52
##
Number of Fisher Scoring iterations: 4

The next part of the output shows the coefficients, their standard errors, the z-statistic
(sometimes called a Wald z-statistic), and the associated p-values. Both gre and gpa are
statistically significant, as are the three terms for rank. The logistic regression coefficients
give the change in the log odds of the outcome for a one unit increase in the predictor
variable.
For every one unit change in gre, the log odds of admission (versus non-admission) increases
by 0.002.
For a one unit increase in gpa, the log odds of being admitted to graduate school increases
by 0.804.
The indicator variables for rank have a slightly different interpretation. For example, having
attended an undergraduate institution with rank of 2, versus an institution with a rank of
1, changes the log odds of admission by -0.675.

To see how the variables in the model participates in the decrease of Residual Deviance, we
can use the ANOVA function on our model.

30 CHAPTER 4. LOGISTIC REGRESSION

anova(model_lgr_df2)

Analysis of Deviance Table
##
Model: binomial, link: logit
##
Response: admit
##
Terms added sequentially (first to last)
##
##
Df Deviance Resid. Df Resid. Dev
NULL 399 499.98
gre 1 13.9204 398 486.06
gpa 1 5.7122 397 480.34
rank 3 21.8265 394 458.52

We can test for an overall effect of rank (its significance) using the wald.test function of
the aod library. The order in which the coefficients are given in the table of coefficients is
the same as the order of the terms in the model. This is important because the wald.test
function refers to the coefficients by their order in the model. We use the wald.test function.
b supplies the coefficients, while Sigma supplies the variance covariance matrix of the error
terms, finally Terms tells R which terms in the model are to be tested, in this case, terms 4,
5, and 6, are the three terms for the levels of rank.
library(aod)
wald.test(Sigma = vcov(model_lgr_df2), b = coef(model_lgr_df2), Terms = 4:6)

Wald test:

##
Chi-squared test:
X2 = 20.9, df = 3, P(> X2) = 0.00011

The chi-squared test statistic of 20.9, with three degrees of freedom is associated with a
p-value of 0.00011 indicating that the overall effect of rank is statistically significant.

Let’s check how our model is performing. As mentioned earlier, we need to make a choice
on the cutoff value (returned probability) to check our accuracy. In this first example, let’s
just stick with the usual 0.5 cutoff value.
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type = "response")
head(prediction_lgr_df2, 10)

1 2 3 4 5 6 7
0.1726265 0.2921750 0.7384082 0.1783846 0.1183539 0.3699699 0.4192462
8 9 10

4.5. EXAMPLE 1 - GRADUATE ADMISSION 31

0.2170033 0.2007352 0.5178682

As it stands, the predict function gives us the probabilty that the observation has a response
of 1; in our case, the probability that a student is being admitted into the graduate program.
To check the accuracy of the model, we need a confusion matrix with a cut off value. So
let’s clean that vector of probability.
prediction_lgr_df2 <- if_else(prediction_lgr_df2 > 0.5 , 1, 0)
confusionMatrix(data = prediction_lgr_df2,

reference = df2$admit, positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 254 97
1 19 30
##
Accuracy : 0.71
95% CI : (0.6628, 0.754)
No Information Rate : 0.6825
P-Value [Acc > NIR] : 0.1293
##
Kappa : 0.1994
Mcnemar's Test P-Value : 8.724e-13
##
Sensitivity : 0.2362
Specificity : 0.9304
Pos Pred Value : 0.6122
Neg Pred Value : 0.7236
Prevalence : 0.3175
Detection Rate : 0.0750
Detection Prevalence : 0.1225
Balanced Accuracy : 0.5833
##
'Positive' Class : 1
##

We have an interesting situation here. Although all our variables were significant in our
model, the accuracy of our model, 71% is just a little bit higher than the basic benchmark
which is the no-information model (ie. we just predict the highest class) in this case 68.25%.

Before we do a ROC curve, let’s have a quick reminder on ROC.
ROC are plotting the proprotion of TP to FP. So ideally we want to have 100% TP and 0%
FP.

32 CHAPTER 4. LOGISTIC REGRESSION

Pure Random guessing should lead to this curve

4.5. EXAMPLE 1 - GRADUATE ADMISSION 33

With that in mind, let’s do a ROC curve on out model
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type="response")
pr_admission <- prediction(prediction_lgr_df2, df2$admit)
prf_admission <- performance(pr_admission, measure = "tpr", x.measure = "fpr")
plot(prf_admission, colorize = TRUE, lwd=3)

34 CHAPTER 4. LOGISTIC REGRESSION

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
06

0.
2

0.
33

0.
47

0.
6

0.
74

At least it is better than just random guessing.

In some applications of ROC curves, you want the point closest to the TPR of 1 and FPR of
0. This cut point is “optimal” in the sense it weighs both sensitivity and specificity equally.
Now, there is a cost measure in the ROCR package that you can use to create a performance
object. Use it to find the cutoff with minimum cost.
cost_admission_perf = performance(pr_admission, "cost")
cutoff <- pr_admission@cutoffs[[1]][which.min(cost_admission_perf@y.values[[1]])]

Using that cutoff value we should get our sensitivity and specificity a bit more in balance.
Let’s try
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type = "response")
prediction_lgr_df2 <- if_else(prediction_lgr_df2 > cutoff , 1, 0)
confusionMatrix(data = prediction_lgr_df2,

reference = df2$admit,
positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 250 91
1 23 36
##
Accuracy : 0.715
95% CI : (0.668, 0.7588)

4.5. EXAMPLE 1 - GRADUATE ADMISSION 35

No Information Rate : 0.6825
P-Value [Acc > NIR] : 0.08878
##
Kappa : 0.2325
Mcnemar's Test P-Value : 3.494e-10
##
Sensitivity : 0.2835
Specificity : 0.9158
Pos Pred Value : 0.6102
Neg Pred Value : 0.7331
Prevalence : 0.3175
Detection Rate : 0.0900
Detection Prevalence : 0.1475
Balanced Accuracy : 0.5996
##
'Positive' Class : 1
##

And bonus, we even gained some accuracy!

I have seen a very cool graph on this website that plots this tradeoff between specificity and
sensitivity and shows how this cutoff point can enhance the understanding of the predictive
power of our model.
Create tibble with both prediction and actual value
cutoff = 0.487194
cutoff_plot <- tibble(predicted = predict(model_lgr_df2, data = df2, type = "response"),

actual = as.factor(df2$admit)) %>%
mutate(type = if_else(predicted >= cutoff & actual == 1, "TP",

if_else(predicted >= cutoff & actual == 0, "FP",
if_else(predicted < cutoff & actual == 0, "TN", "FN"))))

cutoff_plot$type <- as.factor(cutoff_plot$type)

ggplot(cutoff_plot, aes(x = actual, y = predicted, color = type)) +
geom_violin(fill = "white", color = NA) +
geom_jitter(shape = 1) +
geom_hline(yintercept = cutoff, color = "blue", alpha = 0.5) +
scale_y_continuous(limits = c(0, 1)) +
ggtitle(paste0("Confusion Matrix with cutoff at ", cutoff))

http://ethen8181.github.io/machine-learning/unbalanced/unbalanced.html

36 CHAPTER 4. LOGISTIC REGRESSION

0.00

0.25

0.50

0.75

1.00

0 1

actual

pr
ed

ic
te

d

type

FN

FP

TN

TP

Confusion Matrix with cutoff at 0.487194

Last thing … the AUC, aka Area Under the Curve.
The AUC is basically the area under the ROC curve.
You can think of the AUC as sort of a holistic number that represents how well your TP and
FP is looking in aggregate.

AUC=0.5 -> BAD

4.6. EXAMPLE 2 - DIABETES 37

AUC=1 -> GOOD

So in the context of an ROC curve, the more “up and left” it looks, the larger the AUC will
be and thus, the better your classifier is. Comparing AUC values is also really useful when
comparing different models, as we can select the model with the high AUC value, rather
than just look at the curves.

In our situation with our model model_admission_lr, we can find our AUC with the ROCR
package.
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type="response")
pr_admission <- prediction(prediction_lgr_df2, df2$admit)
auc_admission <- performance(pr_admission, measure = "auc")

and to get the exact value
auc_admission@y.values[[1]]

[1] 0.6928413

4.6 Example 2 - Diabetes

In our second example we will use the Pima Indians Diabetes Data Set that can be down-
loaded on the UCI Machine learning website.

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

38 CHAPTER 4. LOGISTIC REGRESSION

We are also dropping a clean version of the file as .csv on our github dataset folder.

The data set records females patients of at least 21 years old of Pima Indian heritage.
df <- read_csv("dataset/diabetes.csv")

The dataset has 768 observations and 9 variables.

Let’s rename our variables with the proper names.
colnames(df) <- c("pregnant", "glucose", "diastolic",

"triceps", "insulin", "bmi", "diabetes", "age",
"test")

glimpse(df)

Observations: 768
Variables: 9
$ pregnant <int> 6, 1, 8, 1, 0, 5, 3, 10, 2, 8, 4, 10, 10, 1, 5, 7, 0...
$ glucose <int> 148, 85, 183, 89, 137, 116, 78, 115, 197, 125, 110, ...
$ diastolic <int> 72, 66, 64, 66, 40, 74, 50, 0, 70, 96, 92, 74, 80, 6...
$ triceps <int> 35, 29, 0, 23, 35, 0, 32, 0, 45, 0, 0, 0, 0, 23, 19,...
$ insulin <int> 0, 0, 0, 94, 168, 0, 88, 0, 543, 0, 0, 0, 0, 846, 17...
$ bmi <dbl> 33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5...
$ diabetes <dbl> 0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.1...
$ age <int> 50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 30, 34, 57, ...
$ test <int> 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1...

All variables seems to have been recorded with the appropriate type in the data frame. Let’s
just change the type of the response variable to factor with positive and negative levels.
df$test <- factor(df$test)
#levels(df$output) <- c("negative", "positive")

Let’s do our regression on the whole dataset.
df2 <- df
model_lgr_df2 <- glm(test ~., data = df2, family = "binomial")
summary(model_lgr_df2)

##
Call:
glm(formula = test ~ ., family = "binomial", data = df2)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5566 -0.7274 -0.4159 0.7267 2.9297
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)

4.6. EXAMPLE 2 - DIABETES 39

(Intercept) -8.4046964 0.7166359 -11.728 < 2e-16 ***
pregnant 0.1231823 0.0320776 3.840 0.000123 ***
glucose 0.0351637 0.0037087 9.481 < 2e-16 ***
diastolic -0.0132955 0.0052336 -2.540 0.011072 *
triceps 0.0006190 0.0068994 0.090 0.928515
insulin -0.0011917 0.0009012 -1.322 0.186065
bmi 0.0897010 0.0150876 5.945 2.76e-09 ***
diabetes 0.9451797 0.2991475 3.160 0.001580 **
age 0.0148690 0.0093348 1.593 0.111192

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 723.45 on 759 degrees of freedom
AIC: 741.45
##
Number of Fisher Scoring iterations: 5

If we look at the z-statistic and the associated p-values, we can see that the variables triceps,
insulin and age are not significant variables.

The logistic regression coefficients give the change in the log odds of the outcome for a one
unit increase in the predictor variable. Hence, everything else being equals, any additional
pregnancy increase the log odds of having diabetes (class_variable = 1) by another 0.1231.

We can see the confidence interval for each variables using the confint function.
confint(model_lgr_df2)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -9.860319374 -7.0481062619
pregnant 0.060918463 0.1868558244
glucose 0.028092756 0.0426500736
diastolic -0.023682464 -0.0031039754
triceps -0.012849460 0.0142115759
insulin -0.002966884 0.0005821426
bmi 0.060849478 0.1200608498
diabetes 0.365370025 1.5386561742
age -0.003503266 0.0331865712

If we want to get the odds, we basically exponentiate the coefficients.
exp(coef(model_lgr_df2))

(Intercept) pregnant glucose diastolic triceps

40 CHAPTER 4. LOGISTIC REGRESSION

0.0002238137 1.1310905981 1.0357892688 0.9867924485 1.0006191560
insulin bmi diabetes age
0.9988090108 1.0938471417 2.5732758592 1.0149800983

In this way, for every additional year of age, the odds of getting diabetes (test = positive) is
increasing by 1.015.

Let’s have a first look at how our model perform
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type="response")
prediction_lgr_df2 <- if_else(prediction_lgr_df2 > 0.5, 1, 0)
#prediction_diabetes_lr <- factor(prediction_diabetes_lr)
#levels(prediction_diabetes_lr) <- c("negative", "positive")

table(df2$test)

##
0 1
500 268
confusionMatrix(data = prediction_lgr_df2,

reference = df2$test,
positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 445 112
1 55 156
##
Accuracy : 0.7826
95% CI : (0.7517, 0.8112)
No Information Rate : 0.651
P-Value [Acc > NIR] : 1.373e-15
##
Kappa : 0.4966
Mcnemar's Test P-Value : 1.468e-05
##
Sensitivity : 0.5821
Specificity : 0.8900
Pos Pred Value : 0.7393
Neg Pred Value : 0.7989
Prevalence : 0.3490
Detection Rate : 0.2031
Detection Prevalence : 0.2747
Balanced Accuracy : 0.7360

4.6. EXAMPLE 2 - DIABETES 41

##
'Positive' Class : 1
##

Let’s create our ROC curve
prediction_lgr_df2 <- predict(model_lgr_df2, data = df2, type="response")
pr_diabetes <- prediction(prediction_lgr_df2, df2$test)
prf_diabetes <- performance(pr_diabetes, measure = "tpr", x.measure = "fpr")
plot(prf_diabetes, colorize = TRUE, lwd = 3)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

2
0.

4
0.

6
0.

8
0.

99

Let’s find the best cutoff value for our model.
cost_diabetes_perf = performance(pr_diabetes, "cost")
cutoff <- pr_diabetes@cutoffs[[1]][which.min(cost_diabetes_perf@y.values[[1]])]

Instead of redoing the whole violin-jitter graph for our model, let’s create a function so we
can reuse it at a later stage.
violin_jitter_graph <- function(cutoff, df_predicted, df_actual){
cutoff_tibble <- tibble(predicted = df_predicted, actual = as.factor(df_actual)) %>%

mutate(type = if_else(predicted >= cutoff & actual == 1, "TP",
if_else(predicted >= cutoff & actual == 0, "FP",

if_else(predicted < cutoff & actual == 0, "TN", "FN"))))
cutoff_tibble$type <- as.factor(cutoff_tibble$type)

ggplot(cutoff_tibble, aes(x = actual, y = predicted, color = type)) +
geom_violin(fill = "white", color = NA) +
geom_jitter(shape = 1) +

42 CHAPTER 4. LOGISTIC REGRESSION

geom_hline(yintercept = cutoff, color = "blue", alpha = 0.5) +
scale_y_continuous(limits = c(0, 1)) +
ggtitle(paste0("Confusion Matrix with cutoff at ", cutoff))

}

violin_jitter_graph(cutoff, predict(model_lgr_df2, data = df2, type = "response"), df2$test)

0.00

0.25

0.50

0.75

1.00

0 1

actual

pr
ed

ic
te

d

type

FN

FP

TN

TP

Confusion Matrix with cutoff at 0.486767971380171

The accuracy of our model is slightly improved by using that new cutoff value.

4.6.1 Accounting for missing values

The UCI Machine Learning website note that there are no missing values on this dataset.
That said, we have to be careful as there are many 0, when it is actually impossible to have
such 0.
So before we keep going let’s fill in these values.

The first thing to to is to change these 0 into NA.
df3 <- df2

#TODO Find a way to create a function and use map from purrr to do this

4.6. EXAMPLE 2 - DIABETES 43

df3$glucose[df3$glucose == 0] <- NA
df3$diastolic[df3$diastolic == 0] <- NA
df3$triceps[df3$triceps == 0] <- NA
df3$insulin[df3$insulin == 0] <- NA
df3$bmi[df3$bmi == 0] <- NA

library(visdat)
vis_dat(df3)

te
st

pr
eg

na
nt

glu
co

se

dia
sto

lic

tri
ce

ps

ins
uli

n
ag

e
bm

i

dia
be

te
s

0

200

400

600

800

O
bs

er
va

tio
ns

Type

factor

integer

numeric

NA

There are a lot of missing values … too many of them really. If this was really life, it would
be important to go back to the drawing board and redisigning the data collection phase.
model_lgr_df3 <- glm(test ~., data = df3, family = "binomial")
summary(model_lgr_df3)

##
Call:
glm(formula = test ~ ., family = "binomial", data = df3)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.7823 -0.6603 -0.3642 0.6409 2.5612
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)

44 CHAPTER 4. LOGISTIC REGRESSION

(Intercept) -1.004e+01 1.218e+00 -8.246 < 2e-16 ***
pregnant 8.216e-02 5.543e-02 1.482 0.13825
glucose 3.827e-02 5.768e-03 6.635 3.24e-11 ***
diastolic -1.420e-03 1.183e-02 -0.120 0.90446
triceps 1.122e-02 1.708e-02 0.657 0.51128
insulin -8.253e-04 1.306e-03 -0.632 0.52757
bmi 7.054e-02 2.734e-02 2.580 0.00989 **
diabetes 1.141e+00 4.274e-01 2.669 0.00760 **
age 3.395e-02 1.838e-02 1.847 0.06474 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 498.10 on 391 degrees of freedom
Residual deviance: 344.02 on 383 degrees of freedom
(376 observations deleted due to missingness)
AIC: 362.02
##
Number of Fisher Scoring iterations: 5

This leads to a very different results than previously.

Let’s have a look at this new model performance
prediction_lgr_df3 <- predict(model_lgr_df3, data = df3, type="response")
prediction_lgr_df3 <- if_else(prediction_lgr_df3 > 0.5, 1, 0)
#prediction_diabetes_lr <- factor(prediction_diabetes_lr)
#levels(prediction_diabetes_lr) <- c("negative", "positive")

table(df3$test)

##
0 1
500 268
#confusionMatrix(data = prediction_diabetes_lr2,
reference = df2$test,
positive = "1")

4.6.2 Imputting Missing Values

Now let’s impute the missing values using the simputatiion package. A nice vignette is
available here.

https://cran.r-project.org/web/packages/simputation/vignettes/intro.html

4.6. EXAMPLE 2 - DIABETES 45

library(simputation)
df4 <- df3
df4 <- impute_lm(df3, formula = glucose ~ pregnant + diabetes + age | test)
df4 <- impute_rf(df4, formula = bmi ~ glucose + pregnant + diabetes + age | test)
df4 <- impute_rf(df4, formula = diastolic ~ bmi + glucose + pregnant + diabetes + age | test)
df4 <- impute_en(df4, formula = triceps ~ pregnant + bmi + diabetes + age | test)

Warning: Package 'glmnet' is needed but not found. Returning original data
df4 <- impute_rf(df4, formula = insulin ~ . | test)

summary(df4)

pregnant glucose diastolic triceps
Min. : 0.000 Min. : 44.00 Min. : 24.00 Min. : 7.00
1st Qu.: 1.000 1st Qu.: 99.75 1st Qu.: 64.00 1st Qu.:22.00
Median : 3.000 Median :117.00 Median : 72.00 Median :29.00
Mean : 3.845 Mean :121.68 Mean : 72.36 Mean :29.15
3rd Qu.: 6.000 3rd Qu.:141.00 3rd Qu.: 80.00 3rd Qu.:36.00
Max. :17.000 Max. :199.00 Max. :122.00 Max. :99.00
NA's :227
insulin bmi diabetes age test
Min. : 14.00 Min. :18.20 Min. :0.0780 Min. :21.00 0:500
1st Qu.: 85.05 1st Qu.:27.50 1st Qu.:0.2437 1st Qu.:24.00 1:268
Median :126.00 Median :32.07 Median :0.3725 Median :29.00
Mean :153.59 Mean :32.43 Mean :0.4719 Mean :33.24
3rd Qu.:188.00 3rd Qu.:36.60 3rd Qu.:0.6262 3rd Qu.:41.00
Max. :846.00 Max. :67.10 Max. :2.4200 Max. :81.00
NA's :227

Ok we managed to get rid of the NAs. Let’s run a last time our logistic model.
model_lgr_df4 <- glm(test ~ ., data = df4, family = "binomial")
summary(model_lgr_df4)

##
Call:
glm(formula = test ~ ., family = "binomial", data = df4)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0410 -0.6503 -0.3665 0.6394 2.4823
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.6141841 1.0124984 -9.496 < 2e-16 ***

46 CHAPTER 4. LOGISTIC REGRESSION

pregnant 0.1279822 0.0435497 2.939 0.003295 **
glucose 0.0348406 0.0048769 7.144 9.06e-13 ***
diastolic -0.0076034 0.0103592 -0.734 0.462959
triceps 0.0070276 0.0147719 0.476 0.634257
insulin 0.0004352 0.0012912 0.337 0.736095
bmi 0.0836719 0.0236054 3.545 0.000393 ***
diabetes 1.2401318 0.3562228 3.481 0.000499 ***
age 0.0267114 0.0140647 1.899 0.057540 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 688.25 on 540 degrees of freedom
Residual deviance: 470.06 on 532 degrees of freedom
(227 observations deleted due to missingness)
AIC: 488.06
##
Number of Fisher Scoring iterations: 5
prediction_lgr_df4 <- predict(model_lgr_df4, data = df4, type="response")
prediction_lgr_df4 <- if_else(prediction_lgr_df4 > 0.5, "positive", "negative")
prediction_lgr_df4 <- factor(prediction_lgr_df4)
levels(prediction_lgr_df4) <- c("negative", "positive")

#table(df4$test, prediction_lgr_df4)
#table(df4$test)
########

#confusionMatrix(data = accuracy_model_lr3,
reference = df3$test,
positive = "positive")

4.6.3 ROC and AUC

prediction_lgr_df4 <- predict(model_lgr_df4, data = df4, type="response")
#pr <- prediction(prediction_lgr_df4, df4$test)
#prf <- performance(pr, measure = "tpr", x.measure = "fpr")
#plot(prf)

Let’s go back to the ideal cut off point that would balance the sensitivity and specificity.
#cost_diabetes_perf <- performance(pr, "cost")
#cutoff <- pr@cutoffs[[1]][which.min(cost_diabetes_perf@y.values[[1]])]

4.7. REFERENCES 47

So for maximum accuracy, the ideal cutoff point is 0.487194.
Let’s redo our confusion matrix then and see some improvement.
prediction_lgr_df4 <- predict(model_lgr_df4, data = df4, type="response")
prediction_lgr_df4 <- if_else(prediction_lgr_df4 >= cutoff, "positive", "negative")

#confusionMatrix(data = accuracy_model_lr3,
reference = df3$test,
positive = "positive")

Another cost measure that is popular is overall accuracy. This measure optimizes the correct
results, but may be skewed if there are many more negatives than positives, or vice versa.
Let’s get the overall accuracy for the simple predictions and plot it.

Actually the ROCR package can also give us a plot of accuracy for various cutoff points
#prediction_lgr_df4 <- performance(pr, measure = "acc")
#plot(prediction_lgr_df4)

Often in medical research for instance, there is a cost in having false negative is quite higher
than a false positve.
Let’s say the cost of missing someone having diabetes is 3 times the cost of telling someone
that he has diabetes when in reality he/she doesn’t.
#cost_diabetes_perf <- performance(pr, "cost", cost.fp = 1, cost.fn = 3)
#cutoff <- pr@cutoffs[[1]][which.min(cost_diabetes_perf@y.values[[1]])]

Lastly, in regards to AUC
#auc <- performance(pr, measure = "auc")
#auc <- auc@y.values[[1]]
#auc

4.7 References

• The Introduction is from the AV website

• Confusion plot. The webpage and the code

• The UCLA Institute for Digital Research and Education site where we got the dataset
for our first example

• The UCI Machine learning site where we got the dataset for our second example

• Function to use ROC with ggplot2 - The Joy of Data and here as well

https://www.analyticsvidhya.com/blog/2015/11/beginners-guide-on-logistic-regression-in-r/?utm_content=buffer43450&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer
http://ethen8181.github.io/machine-learning/unbalanced/unbalanced.html
https://github.com/ethen8181/machine-learning/blob/master/unbalanced/unbalanced_code/unbalanced_functions.R
http://www.ats.ucla.edu/stat/data/binary.csv
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://www.joyofdata.de/blog/illustrated-guide-to-roc-and-auc/
https://github.com/joyofdata/joyofdata-articles/tree/master/roc-auc

48 CHAPTER 4. LOGISTIC REGRESSION

Chapter 5

Softmax and multinomial regressions

5.1 Multinomial Logistic Regression

5.2 References

If

49

50 CHAPTER 5. SOFTMAX AND MULTINOMIAL REGRESSIONS

Chapter 6

KNN - K Nearest Neighbour

The KNN algorithm is a robust and versatile classifier that is often used as a benchmark
for more complex classifiers such as Artificial Neural Networks (ANN) and Support Vector
Machines (SVM). Despite its simplicity, KNN can outperform more powerful classifiers and
is used in a variety of applications.

The KNN classifier is also a non parametric and instance-based learning algorithm.

Non-parametric means it makes no explicit assumptions about the functional form of h,
avoiding the dangers of mismodeling the underlying distribution of the data. For exam-
ple, suppose our data is highly non-Gaussian but the learning model we choose assumes a
Gaussian form. In that case, our algorithm would make extremely poor predictions.

Instance-based learning means that our algorithm doesn’t explicitly learn a model (lazy
learner). Instead, it chooses to memorize the training instances which are subsequently used
as “knowledge” for the prediction phase. Concretely, this means that only when a query
to our database is made (i.e. when we ask it to predict a label given an input), will the
algorithm use the training instances to spit out an answer.

It is worth noting that the minimal training phase of KNN comes both at a memory cost,
since we must store a potentially huge data set, as well as a computational cost during
test time since classifying a given observation requires a run down of the whole data set.
Practically speaking, this is undesirable since we usually want fast responses.

The principle behind KNN classifier (K-Nearest Neighbor) algorithm is to find K predefined
number of training samples that are closest in the distance to a new point & predict a label
for our new point using these samples.

When K is small, we are restraining the region of a given prediction and forcing our classifier
to be “more blind” to the overall distribution. A small value for K provides the most flexi-
ble fit, which will have low bias but high variance. Graphically, our decision boundary will be

51

52 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

more jagged.

On the other hand, a higher K averages more voters in each prediction and hence is more
resilient to outliers. Larger values of K will have smoother decision boundaries which means

6.1. EXAMPLE 1. PROSTATE CANCER DATASET 53

lower variance but increased bias.

6.1 Example 1. Prostate Cancer dataset

library(tidyverse)
df <- read_csv("dataset/prostate_cancer.csv")
glimpse(df)

Observations: 100
Variables: 10
$ id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1...
$ diagnosis_result <chr> "M", "B", "M", "M", "M", "B", "M", "M", "M",...
$ radius <int> 23, 9, 21, 14, 9, 25, 16, 15, 19, 25, 24, 17...
$ texture <int> 12, 13, 27, 16, 19, 25, 26, 18, 24, 11, 21, ...
$ perimeter <int> 151, 133, 130, 78, 135, 83, 120, 90, 88, 84,...
$ area <int> 954, 1326, 1203, 386, 1297, 477, 1040, 578, ...
$ smoothness <dbl> 0.143, 0.143, 0.125, 0.070, 0.141, 0.128, 0....
$ compactness <dbl> 0.278, 0.079, 0.160, 0.284, 0.133, 0.170, 0....

54 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

$ symmetry <dbl> 0.242, 0.181, 0.207, 0.260, 0.181, 0.209, 0....
$ fractal_dimension <dbl> 0.079, 0.057, 0.060, 0.097, 0.059, 0.076, 0....

Change the diagnosis result into a factor, then remove the ID variable as it does not bring
anything.
df$diagnosis_result <- factor(df$diagnosis_result, levels = c("B", "M"),

labels = c("Benign", "Malignant"))
df2 <- df %>% select(-id)

Checking how balance is the dependend variable
prop.table(table(df2$diagnosis_result))

##
Benign Malignant
0.38 0.62

It is quite typical of such medical dataset to be unbalanced. We’ll have to deal with it.

Like with PCA, KNN is quite sensitve to the scale of the variable. So it is important to first
standardize the variables. This time we’ll do this using the preProcess funnction of the
caret package.

library(caret)
param_preproc_df2 <- preProcess(df2[,2:9], method = c("scale", "center"))
df3_stdize <- predict(param_preproc_df2, df2[, 2:9])

summary(df3_stdize)

radius texture perimeter area
Min. :-1.60891 Min. :-1.3923 Min. :-1.8914 Min. :-1.5667
1st Qu.:-0.99404 1st Qu.:-0.8146 1st Qu.:-0.6031 1st Qu.:-0.7073
Median : 0.03074 Median :-0.1406 Median :-0.1174 Median :-0.1842
Mean : 0.00000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
3rd Qu.: 0.85057 3rd Qu.: 0.7741 3rd Qu.: 0.7379 3rd Qu.: 0.6697
Max. : 1.67039 Max. : 1.6888 Max. : 3.1770 Max. : 3.6756
smoothness compactness symmetry fractal_dimension
Min. :-2.23539 Min. :-1.4507 Min. :-1.8896 Min. :-1.4342
1st Qu.:-0.63039 1st Qu.:-0.7556 1st Qu.:-0.6877 1st Qu.:-0.6981
Median :-0.04986 Median :-0.1341 Median :-0.1030 Median :-0.2073
Mean : 0.00000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
3rd Qu.: 0.63312 3rd Qu.: 0.4956 3rd Qu.: 0.5142 3rd Qu.: 0.5288
Max. : 2.75035 Max. : 3.5703 Max. : 3.6001 Max. : 3.9639

We can now see that all means are centered around 0. Now we reconstruct our df with the
response variable and we split the df into a training and testing set.

6.1. EXAMPLE 1. PROSTATE CANCER DATASET 55

df3_stdize <- bind_cols(diagnosis = df2$diagnosis_result, df3_stdize)

param_split<- createDataPartition(df3_stdize$diagnosis, times = 1, p = 0.8,
list = FALSE)

train_df3 <- df3_stdize[param_split,]
test_df3 <- df3_stdize[-param_split,]

#We can check that we still have the same kind of split
prop.table(table(train_df3$diagnosis))

##
Benign Malignant
0.382716 0.617284

Nice to see that the proportion of Malign vs Benin has been conserved.
We use KNN with cross-validation (discussed in more details in this section 9.3 to train our

model.
trnctrl_df3 <- trainControl(method = "cv", number = 10)
model_knn_df3 <- train(diagnosis ~., data = train_df3, method = "knn",

trControl = trnctrl_df3,
tuneLength = 10)

model_knn_df3

k-Nearest Neighbors
##
81 samples
8 predictors
2 classes: 'Benign', 'Malignant'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 73, 73, 73, 73, 73, 72, ...
Resampling results across tuning parameters:
##
k Accuracy Kappa
5 0.8388889 0.6299719
7 0.8250000 0.6021612
9 0.8250000 0.5933700
11 0.8375000 0.6181319
13 0.8375000 0.6181319
15 0.8138889 0.5620879
17 0.8263889 0.5950549
19 0.8375000 0.6183700
21 0.8388889 0.6362271

56 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

23 0.8250000 0.6015751
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 21.
plot(model_knn_df3)

#Neighbors

A
cc

ur
ac

y
(C

ro
ss

−
V

al
id

at
io

n)

0.815

0.820

0.825

0.830

0.835

0.840

5 10 15 20

predict_knn_df3 <- predict(model_knn_df3, test_df3)
confusionMatrix(predict_knn_df3, test_df3$diagnosis, positive = "Malignant")

Confusion Matrix and Statistics
##
Reference
Prediction Benign Malignant
Benign 5 0
Malignant 2 12
##
Accuracy : 0.8947
95% CI : (0.6686, 0.987)
No Information Rate : 0.6316
P-Value [Acc > NIR] : 0.01135
##
Kappa : 0.7595
Mcnemar's Test P-Value : 0.47950
##

6.2. EXAMPLE 2. WINE DATASET 57

Sensitivity : 1.0000
Specificity : 0.7143
Pos Pred Value : 0.8571
Neg Pred Value : 1.0000
Prevalence : 0.6316
Detection Rate : 0.6316
Detection Prevalence : 0.7368
Balanced Accuracy : 0.8571
##
'Positive' Class : Malignant
##

6.2 Example 2. Wine dataset

We load the dataset and do some quick cleaning
df <- read_csv("dataset/Wine_UCI.csv", col_names = FALSE)
colnames(df) <- c("Origin", "Alcohol", "Malic_acid", "Ash", "Alkalinity_of_ash",

"Magnesium", "Total_phenols", "Flavanoids", "Nonflavonoids_phenols",
"Proanthocyanins", "Color_intensity", "Hue", "OD280_OD315_diluted_wines",
"Proline")

glimpse(df)

Observations: 178
Variables: 14
$ Origin <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ Alcohol <dbl> 14.23, 13.20, 13.16, 14.37, 13.24, 1...
$ Malic_acid <dbl> 1.71, 1.78, 2.36, 1.95, 2.59, 1.76, ...
$ Ash <dbl> 2.43, 2.14, 2.67, 2.50, 2.87, 2.45, ...
$ Alkalinity_of_ash <dbl> 15.6, 11.2, 18.6, 16.8, 21.0, 15.2, ...
$ Magnesium <int> 127, 100, 101, 113, 118, 112, 96, 12...
$ Total_phenols <dbl> 2.80, 2.65, 2.80, 3.85, 2.80, 3.27, ...
$ Flavanoids <dbl> 3.06, 2.76, 3.24, 3.49, 2.69, 3.39, ...
$ Nonflavonoids_phenols <dbl> 0.28, 0.26, 0.30, 0.24, 0.39, 0.34, ...
$ Proanthocyanins <dbl> 2.29, 1.28, 2.81, 2.18, 1.82, 1.97, ...
$ Color_intensity <dbl> 5.64, 4.38, 5.68, 7.80, 4.32, 6.75, ...
$ Hue <dbl> 1.04, 1.05, 1.03, 0.86, 1.04, 1.05, ...
$ OD280_OD315_diluted_wines <dbl> 3.92, 3.40, 3.17, 3.45, 2.93, 2.85, ...
$ Proline <int> 1065, 1050, 1185, 1480, 735, 1450, 1...

The origin is our dependent variable. Let’s make it a factor.
df$Origin <- as.factor(df$Origin)

58 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

#Let's check our explained variable distribution of origin
round(prop.table(table(df$Origin)), 2)

##
1 2 3
0.33 0.40 0.27

That’s nice, our explained variable is almost equally distributed with the 3 set of origin.
Let's also check if we have any NA values
summary(df)

Origin Alcohol Malic_acid Ash Alkalinity_of_ash
1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60
2:71 1st Qu.:12.36 1st Qu.:1.603 1st Qu.:2.210 1st Qu.:17.20
3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50
Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49
3rd Qu.:13.68 3rd Qu.:3.083 3rd Qu.:2.558 3rd Qu.:21.50
Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00
Magnesium Total_phenols Flavanoids Nonflavonoids_phenols
Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300
1st Qu.: 88.00 1st Qu.:1.742 1st Qu.:1.205 1st Qu.:0.2700
Median : 98.00 Median :2.355 Median :2.135 Median :0.3400
Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619
3rd Qu.:107.00 3rd Qu.:2.800 3rd Qu.:2.875 3rd Qu.:0.4375
Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600
Proanthocyanins Color_intensity Hue
Min. :0.410 Min. : 1.280 Min. :0.4800
1st Qu.:1.250 1st Qu.: 3.220 1st Qu.:0.7825
Median :1.555 Median : 4.690 Median :0.9650
Mean :1.591 Mean : 5.058 Mean :0.9574
3rd Qu.:1.950 3rd Qu.: 6.200 3rd Qu.:1.1200
Max. :3.580 Max. :13.000 Max. :1.7100
OD280_OD315_diluted_wines Proline
Min. :1.270 Min. : 278.0
1st Qu.:1.938 1st Qu.: 500.5
Median :2.780 Median : 673.5
Mean :2.612 Mean : 746.9
3rd Qu.:3.170 3rd Qu.: 985.0
Max. :4.000 Max. :1680.0

Here we noticed that the range of values in our variable is quite wide. It means our data will
need to be standardize. We also note that we no “NA” values. That’s quite a nice surprise!

6.2. EXAMPLE 2. WINE DATASET 59

6.2.1 Understand the data

We first slide our data in a training and testing set.
df2 <- df
param_split_df2 <- createDataPartition(df2$Origin, p = 0.75, list = FALSE)

train_df2 <- df2[param_split_df2,]
test_df2 <- df2[-param_split_df2,]

The great with caret is we can standardize our data in the the training phase.

6.2.1.1 Model the data

Let’s keep using caret for our training.

trnctrl_df2 <- trainControl(method = "repeatedcv", number = 10, repeats = 3)
model_knn_df2 <- train(Origin ~., data = train_df2, method = "knn",

trControl = trnctrl_df2,
preProcess = c("center", "scale"),
tuneLength = 10)

model_knn_df2

k-Nearest Neighbors
##
135 samples
13 predictors
3 classes: '1', '2', '3'
##
Pre-processing: centered (13), scaled (13)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 122, 121, 121, 121, 122, 121, ...
Resampling results across tuning parameters:
##
k Accuracy Kappa
5 0.9600733 0.9392079
7 0.9675824 0.9508517
9 0.9703297 0.9549689
11 0.9725275 0.9584661
13 0.9699634 0.9546670
15 0.9723443 0.9583141
17 0.9749084 0.9620538
19 0.9749084 0.9620538
21 0.9774725 0.9659932

60 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

23 0.9750916 0.9624313
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 21.
plot(model_knn_df2)

#Neighbors

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
−

V
al

id
at

io
n)

0.960

0.965

0.970

0.975

5 10 15 20

Let’s use our model to make our prediction
prediction_knn_df2 <- predict(model_knn_df2, newdata = test_df2)

confusionMatrix(prediction_knn_df2, reference = test_df2$Origin)

Confusion Matrix and Statistics
##
Reference
Prediction 1 2 3
1 14 2 0
2 0 13 0
3 0 2 12
##
Overall Statistics
##
Accuracy : 0.907
95% CI : (0.7786, 0.9741)
No Information Rate : 0.3953

6.3. REFERENCES 61

P-Value [Acc > NIR] : 3.376e-12
##
Kappa : 0.8608
Mcnemar's Test P-Value : NA
##
Statistics by Class:
##
Class: 1 Class: 2 Class: 3
Sensitivity 1.0000 0.7647 1.0000
Specificity 0.9310 1.0000 0.9355
Pos Pred Value 0.8750 1.0000 0.8571
Neg Pred Value 1.0000 0.8667 1.0000
Prevalence 0.3256 0.3953 0.2791
Detection Rate 0.3256 0.3023 0.2791
Detection Prevalence 0.3721 0.3023 0.3256
Balanced Accuracy 0.9655 0.8824 0.9677

6.3 References

• KNN R, K-Nearest neighbor implementation in R using caret package. Here
• A complete guide to KNN. Here

http://dataaspirant.com/2017/01/09/knn-implementation-r-using-caret-package/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

62 CHAPTER 6. KNN - K NEAREST NEIGHBOUR

Chapter 7

Principal Component Analysis

To create a predictive model based on regression we like to have as many relevant predictors
as possible. The whole difficulty resides in finding relevant predictors. For predictors to be
relevant, they should explain the variance of the dependent variable.
Too many predictors (high dimensionality) and we take the risk of over-fitting.

The intuition of Principal Component Analysis is to find new combination of variables which
form larger variances. Why are larger variances important? This is a similar concept of
entropy in information theory. Let’s say you have two variables. One of them (Var 1) forms
N(1, 0.01) and the other (Var 2) forms N(1, 1). Which variable do you think has more
information? Var 1 is always pretty much 1 whereas Var 2 can take a wider range of values,
like 0 or 2. Thus, Var 2 has more chances to have various values than Var 1, which means
Var 2’s entropy is larger than Var 1’s. Thus, we can say Var 2 contains more information
than Var 1.

PCA tries to find linear combination of the variables which contain much information by
looking at the variance. This is why the standard deviation is one of the important metrics
to determine the number of new variables in PCA. Another interesting aspect of the new
variables derived by PCA is that all new variables are orthogonal. You can think that PCA
is rotating and translating the data such that the first axis contains the most information,
and the second has the second most information, and so forth.

Principal Component Analysis (PCA) is a feature extraction methods that use orthogonal
linear projections to capture the underlying variance of the data. When PCR compute the
principle components is not looking at the response but only at the predictors (by looking
for a linear combination of the predictors that has the highest variance). It makes the
assumption that the linear combination of the predictors that has the highest variance is
associated with the response.

The algorithm when applied linearly transforms m-dimensional input space to n-dimensional
(n < m) output space, with the objective to minimize the amount of information/variance
lost by discarding (m-n) dimensions. PCA allows us to discard the variables/features that
have less variance.

63

64 CHAPTER 7. PRINCIPAL COMPONENT ANALYSIS

When choosing the principal component, we assume that the regression plane varies along
the line and doesn’t vary in the other orthogonal direction. By choosing one component and
not the other, we’re ignoring the second direction.

PCR looks in the direction of variation of the predictors to find the places where the responses
is most likely to vary.

Some of the most notable advantages of performing PCA are the following:

• Dimensionality reduction
• Avoidance of multicollinearity between predictors. Variables are orthogonal, so includ-

ing, say, PC9 in the model has no bearing on, say, PC3
• Variables are ordered in terms of standard error. Thus, they also tend to be ordered

in terms of statistical significance
• Overfitting mitigation

The primary disadvantage is that this model is far more difficult to interpret than a regular
logistic regression model

With principal components regression, the new transformed variables (the principal compo-
nents) are calculated in a totally unsupervised way:

• the response Y is not used to help determine the principal component directions).
• the response does not supervise the identification of the principal components.
• PCR just looks at the x variables

The PCA method can dramatically improve estimation and insight in problems where mul-
ticollinearity is a large problem – as well as aid in detecting it.

7.1 PCA on an easy example.

Let’s say we asked 16 participants four questions (on a 7 scale) about what they care about
when choosing a new computer, and got the results like this.
Price <- c(6,7,6,5,7,6,5,6,3,1,2,5,2,3,1,2)
Software <- c(5,3,4,7,7,4,7,5,5,3,6,7,4,5,6,3)
Aesthetics <- c(3,2,4,1,5,2,2,4,6,7,6,7,5,6,5,7)
Brand <- c(4,2,5,3,5,3,1,4,7,5,7,6,6,5,5,7)
buy_computer <- tibble(Price, Software, Aesthetics, Brand)

Let’s go on with the PCA. princomp is part of the stats package.
pca_buycomputer <- prcomp(buy_computer, scale = TRUE, center = TRUE)
names(pca_buycomputer)

[1] "sdev" "rotation" "center" "scale" "x"

7.1. PCA ON AN EASY EXAMPLE. 65

print(pca_buycomputer)

Standard deviations (1, .., p=4):
[1] 1.5589391 0.9804092 0.6816673 0.3792578
##
Rotation (n x k) = (4 x 4):
PC1 PC2 PC3 PC4
Price -0.5229138 0.00807487 -0.8483525 0.08242604
Software -0.1771390 0.97675554 0.1198660 0.01423081
Aesthetics 0.5965260 0.13369503 -0.2950727 0.73431229
Brand 0.5825287 0.16735905 -0.4229212 -0.67363855
summary(pca_buycomputer, loadings = TRUE)

Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.5589 0.9804 0.6817 0.37926
Proportion of Variance 0.6076 0.2403 0.1162 0.03596
Cumulative Proportion 0.6076 0.8479 0.9640 1.00000
OS <- c(0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1)
library(ggbiplot)
g <- ggbiplot(pca_buycomputer, obs.scale = 1, var.scale = 1, groups = as.character(OS),

ellipse = TRUE, circle = TRUE)
g <- g + scale_color_discrete(name = '')
g <- g + theme(legend.direction = 'horizontal',

legend.position = 'top')
print(g)

66 CHAPTER 7. PRINCIPAL COMPONENT ANALYSIS

Price

S
oftw

are

AestheticsBrand

−2

−1

0

1

2

−3 −2 −1 0 1 2

PC1 (60.8% explained var.)

P
C

2
(2

4.
0%

 e
xp

la
in

ed
 v

ar
.)

0 1

Remember that one of the disadventage of PCA is how difficult it is to interpret the model
(ie. what does the PC1 is representing, what does PC2 is representing, etc.). The biplot
graph help somehow to overcome that.

In the above graph, one can see that Brandand Aesthetic explain most of the variance in
the new predictor PC1 while Software explain most of the variance in the new predictor
PC2. It is also to be noted that Brand and Aesthetic are quite highly correlated.

Once you have done the analysis with PCA, you may want to look into whether the new
variables can predict some phenomena well. This is kinda like machine learning: Whether
features can classify the data well. Let’s say you have asked the participants one more thing,
which OS they are using (Windows or Mac) in your survey, and the results are like this.
OS <- c(0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1)
Let's test our model
model1 <- glm(OS ~ pca_buycomputer$x[,1] + pca_buycomputer$x[,2], family = binomial)
summary(model1)

##
Call:
glm(formula = OS ~ pca_buycomputer$x[, 1] + pca_buycomputer$x[,
2], family = binomial)
##
Deviance Residuals:

7.1. PCA ON AN EASY EXAMPLE. 67

Min 1Q Median 3Q Max
-2.4485 -0.4003 0.1258 0.5652 1.2814
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2138 0.7993 -0.268 0.7891
pca_buycomputer$x[, 1] 1.5227 0.6621 2.300 0.0215 *
pca_buycomputer$x[, 2] 0.7337 0.9234 0.795 0.4269

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 22.181 on 15 degrees of freedom
Residual deviance: 11.338 on 13 degrees of freedom
AIC: 17.338
##
Number of Fisher Scoring iterations: 5

Let’s see how well this model predicts the kind of OS. You can use fitted() function to see
the prediction.
fitted(model1)

1 2 3 4 5 6
0.114201733 0.009372181 0.217716320 0.066009817 0.440016243 0.031640529
7 8 9 10 11 12
0.036189119 0.175766013 0.906761064 0.855587371 0.950088045 0.888272270
13 14 15 16
0.781098710 0.757499202 0.842557931 0.927223453

These values represent the probabilities of being 1. For example, we can expect 11% chance
that Participant 1 is using OS 1 based on the variable derived by PCA. Thus, in this case,
Participant 1 is more likely to be using OS 0, which agrees with the survey response. In this
way, PCA can be used with regression models for calculating the probability of a phenomenon
or making a prediction.

I have tried to do the same with scaling the data using scale(x) and it changed absolutely
nothing.

In general, the data will tend to follow the 80/20 rule. Most of the variance (interesting part
of data) will be explained by a very small number of principal components. You might be
able to explain 95% of the variance in your dataset using only 10% of the original number of
attributes. However, this is entirely dependent on the dataset. Often, a good rule of thumb
is to identify the principal components that explain 99% of the variance in the data.

68 CHAPTER 7. PRINCIPAL COMPONENT ANALYSIS

7.2 References.

Here are the articles I have consulted for this research.

• Principal Component Analysis (PCA)

• Principal Component Analysis using R

• Computing and visualizing PCA in R This is where we learned about the ‘ggbiplot

• Practical Guide to Principal Component Analysis (PCA) in R & Python

• Performing Principal Components Regression (PCR) in R

• Data Mining - Principal Component (Analysis|Regression) (PCA)

• PRINCIPAL COMPONENT ANALYSIS IN R A really nice explanation on the dif-
ference between the main packages doing PCA such as svd, princompand prcomp. In
R there are two general methods to perform PCA without any missing values: The
spectral decomposition method of analysis examines the covariances and correlations
between variables, whereas the singular value decomposition method looks at the co-
variances and correlations among the samples. While both methods can easily be
performed within R, the singular value decomposition method is the preferred analysis
for numerical accuracy.

Although principal component analysis assumes multivariate normality, this is not a very
strict assumption, especially when the procedure is used for data reduction or exploratory
purposes. Undoubtedly, the correlation and covariance matrices are better measures of simi-
larity if the data is normal, and yet, PCA is often unaffected by mild violations. However, if
the new components are to be used in further analyses, such as regression analysis, normality
of the data might be more important.

http://yatani.jp/teaching/doku.php?id=hcistats:pca
http://www.dataperspective.info/2016/02/principal-component-analysis-using-r.html
https://tgmstat.wordpress.com/2013/11/28/computing-and-visualizing-pca-in-r/
http://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/
http://www.milanor.net/blog/performing-principal-components-regression-pcr-in-r/
http://gerardnico.com/wiki/data_mining/pca
https://www.ime.usp.br/~pavan/pdf/MAE0330-PCA-R-2013

Chapter 8

Trees, Random forests and
Classification

8.1 Introduction

Classification trees are non-parametric methods to recursively partition the data into more
“pure” nodes, based on splitting rules.

Logistic regression vs Decision trees. It is dependent on the type of problem you are solving.
Let’s look at some key factors which will help you to decide which algorithm to use:

• If the relationship between dependent & independent variable is well approximated by
a linear model, linear regression will outperform tree based model.

• If there is a high non-linearity & complex relationship between dependent & indepen-
dent variables, a tree model will outperform a classical regression method.

• If you need to build a model which is easy to explain to people, a decision tree model
will always do better than a linear model. Decision tree models are even simpler to
interpret than linear regression!

The 2 main disadventages of Decision trees: Over fitting: Over fitting is one of the most
practical difficulty for decision tree models. This problem gets solved by setting constraints
on model parameters and pruning (discussed in detailed below).

Not fit for continuous variables: While working with continuous numerical variables,
decision tree looses information when it categorizes variables in different categories.

Decision trees use multiple algorithms to decide to split a node in two or more sub-nodes.
The creation of sub-nodes increases the homogeneity of resultant sub-nodes. In other words,
we can say that purity of the node increases with respect to the target variable. Decision
tree splits the nodes on all available variables and then selects the split which results in most
homogeneous sub-nodes.

69

70 CHAPTER 8. TREES, RANDOM FORESTS AND CLASSIFICATION

8.2 First example.

Let’s do a CART on the iris dataset. This is the Hello World! of CART.
library(rpart)
library(rpart.plot)
data("iris")
str(iris)

'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
table(iris$Species)

##
setosa versicolor virginica
50 50 50
tree <- rpart(Species ~., data = iris, method = "class")
tree

n= 150
##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *
3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)
6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *
7) Petal.Width>=1.75 46 1 virginica (0.00000000 0.02173913 0.97826087) *

The method-argument can be switched according to the type of the response variable. It
is class for categorial, anova for numerical, poisson for count data and ‘exp for survival
data.

Important Terminology related to Decision Trees

Root Node: It represents entire population or sample and this further gets divided into
two or more homogeneous sets.

Splitting: It is a process of dividing a node into two or more sub-nodes.

Decision Node: When a sub-node splits into further sub-nodes, then it is called decision
node.

8.2. FIRST EXAMPLE. 71

Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.

Pruning: When we remove sub-nodes of a decision node, this process is called pruning. You
can say opposite process of splitting.

Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.

Parent and Child Node: A node, which is divided into sub-nodes is called parent node
of sub-nodes where as sub-nodes are the child of parent node.
rpart.plot(tree)

Petal.Length < 2.5

Petal.Width < 1.8

setosa
.33 .33 .33

100%

setosa
1.00 .00 .00

33%

versicolor
.00 .50 .50

67%

versicolor
.00 .91 .09

36%

virginica
.00 .02 .98

31%

yes no

setosa
versicolor
virginica

This is a model with a multi-class response. Each node shows

• the predicted class (setosa, versicolor, virginica),
• the predicted probability of each class,
• the percentage of observations in the node

table(iris$Species, predict(tree, type = "class"))

##
setosa versicolor virginica
setosa 50 0 0
versicolor 0 49 1
virginica 0 5 45

72 CHAPTER 8. TREES, RANDOM FORESTS AND CLASSIFICATION

8.3 Second Example.

Data set is the titanic. This is a model with a binary response.
data("ptitanic")
str(ptitanic)

'data.frame': 1309 obs. of 6 variables:
$ pclass : Factor w/ 3 levels "1st","2nd","3rd": 1 1 1 1 1 1 1 1 1 1 ...
$ survived: Factor w/ 2 levels "died","survived": 2 2 1 1 1 2 2 1 2 1 ...
$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
$ age :Class 'labelled' atomic [1:1309] 29 0.917 2 30 25 ...
.. ..- attr(*, "units")= chr "Year"
.. ..- attr(*, "label")= chr "Age"
$ sibsp :Class 'labelled' atomic [1:1309] 0 1 1 1 1 0 1 0 2 0 ...
.. ..- attr(*, "label")= chr "Number of Siblings/Spouses Aboard"
$ parch :Class 'labelled' atomic [1:1309] 0 2 2 2 2 0 0 0 0 0 ...
.. ..- attr(*, "label")= chr "Number of Parents/Children Aboard"
ptitanic$age <- as.numeric(ptitanic$age)
ptitanic$sibsp <- as.integer(ptitanic$sibsp)
ptitanic$parch <- as.integer(ptitanic$parch)

Actually we can make the table more relevant.
round(prop.table(table(ptitanic$sex, ptitanic$survived), 1), 2)

##
died survived
female 0.27 0.73
male 0.81 0.19

One can see here that the sum of the percentage add to 1 horizontally. If one want to make
it vertically, we use 2.

You can find the default limits by typing ?rpart.control. The first one we want to unleash is
the cp parameter, this is the metric that stops splits that aren’t deemed important enough.
The other one we want to open up is minsplit which governs how many passengers must
sit in a bucket before even looking for a split.

By putting a very low cp we are asking to have a very deep tree. The idea is that we prune
it later. So in this first regression on ptitanic we’ll set a very low cp.
library(rpart)
library(rpart.plot)
set.seed(123)
tree <- rpart(survived ~ ., data = ptitanic, cp=0.00001)
rpart.plot(tree)

8.3. SECOND EXAMPLE. 73

sex = male

age >= 9.5

pclass = 2nd,3rd

age >= 54

sibsp < 0.5

age >= 36

age < 34

age < 48

parch < 0.5

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

age >= 16

parch >= 3.5

age >= 28

age < 22

age < 15

age >= 7

died
0.38

100%

died
0.19
64%

died
0.17
61%

died
0.13
47%

died
0.33
13%

died
0.11
2%

died
0.37
11%

died
0.33
8%

died
0.26
5%

died
0.46
3%

died
0.36
2%

survived
0.78
1%

died
0.47
3%

died
0.42
3%

died
0.36
2%

survived
0.62
1%

survived
0.58
1%

survived
0.53
4%

died
0.05
2%

survived
0.89
2%

survived
0.73
36%

died
0.49
17%

died
0.14
2%

survived
0.53
15%

died
0.49
12%

died
0.11
1%

survived
0.51
12%

died
0.39
3%

survived
0.56
8%

died
0.39
2%

survived
0.62
6%

survived
0.73
3%

survived
0.62
2%

died
0.37
1%

survived
0.75
1%

survived
1.00
1%

survived
0.93
19%

yes no

Each node shows

• the predicted class (died or survived),
• the predicted probability of survival,
• the percentage of observations in the node.

Let’s do a confusion matrix based on this tree.
conf.matrix <- round(prop.table(table(ptitanic$survived, predict(tree, type="class")), 2), 2)
rownames(conf.matrix) <- c("Actually died", "Actually Survived")
colnames(conf.matrix) <- c("Predicted dead", "Predicted Survived")
conf.matrix

##
Predicted dead Predicted Survived
Actually died 0.83 0.16
Actually Survived 0.17 0.84

Let’s learn a bit more about trees. By using the name function, one can see all the object
inherent to the tree function.
A few intersting ones. The ‘$where component indicates to which leaf the different observa-
tions have been assigned.
names(tree)

[1] "frame" "where" "call"
[4] "terms" "cptable" "method"
[7] "parms" "control" "functions"

74 CHAPTER 8. TREES, RANDOM FORESTS AND CLASSIFICATION

[10] "numresp" "splits" "csplit"
[13] "variable.importance" "y" "ordered"

How to prune a tree? We want the cp value (with a simpler tree) that minimizes the xerror.
So you need to find the lowest Cross-Validation Error. 2 ways to do this. Either the plotcp
or the printcp functions. The plotcp is a visual representation of printcp function.

The problem with reducing the ‘xerror is that the cross-validation error is a random quantity.
There is no guarantee that if we were to fit the sequence of trees again using a different
random seed that the same tree would minimize the cross-validation error.
A more robust alternative to minimum cross-validation error is to use the one standard
deviation rule: choose the smallest tree whose cross-validation error is within one standard
error of the minimum. Depending on how we define this there are two possible choices. The
first tree whose point estimate of the cross-validation error falls within the ± 1 xstd of the
minimum. On the other hand the standard error lower limit of the tree of size three is within
+ 1 xstd of the minimum.

Either of these is a reasonable choice, but insisting that the point estimate itself fall within
the standard error limits is probably the more robust solution.

As discussed earlier, the technique of setting constraint is a greedy-approach. In other words,
it will check for the best split instantaneously and move forward until one of the specified
stopping condition is reached. Let’s consider the following case when you’re driving: There
are 2 lanes: A lane with cars moving at 80km/h A lane with trucks moving at 30km/h At
this instant, you are a car in the fast lane and you have 2 choices: Take a left and overtake
the other 2 cars quickly Keep moving in the present lane Lets analyze these choice. In the
former choice, you’ll immediately overtake the car ahead and reach behind the truck and start
moving at 30 km/h, looking for an opportunity to move back right. All cars originally behind
you move ahead in the meanwhile. This would be the optimum choice if your objective is to
maximize the distance covered in next say 10 seconds. In the later choice, you sale through
at same speed, cross trucks and then overtake maybe depending on situation ahead. Greedy
you!

This is exactly the difference between normal decision tree & pruning. A decision tree with
constraints won’t see the truck ahead and adopt a greedy approach by taking a left. On the
other hand if we use pruning, we in effect look at a few steps ahead and make a choice. So
we know pruning is better.
printcp(tree)

##
Classification tree:
rpart(formula = survived ~ ., data = ptitanic, cp = 1e-05)
##
Variables actually used in tree construction:
[1] age parch pclass sex sibsp
##
Root node error: 500/1309 = 0.38197

8.3. SECOND EXAMPLE. 75

##
n= 1309
##
CP nsplit rel error xerror xstd
1 0.4240000 0 1.000 1.000 0.035158
2 0.0210000 1 0.576 0.576 0.029976
3 0.0150000 3 0.534 0.570 0.029863
4 0.0113333 5 0.504 0.566 0.029787
5 0.0025714 9 0.458 0.530 0.029076
6 0.0020000 16 0.440 0.530 0.029076
7 0.0000100 18 0.436 0.534 0.029157
plotcp(tree)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
4

0.
6

0.
8

1.
0

Inf 0.094 0.018 0.013 0.0054 0.0023 0.00014

1 2 4 6 10 17 19

size of tree

tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"]

[1] 0.002571429

See if we can prune slightly the tree
bestcp <- tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
tree.pruned <- prune(tree, cp = bestcp)

#this time we add a few arguments to add some mojo to our graphed tree.
#Actually this will give us a very similar graphed tree as rattle (and we like that graph!)

76 CHAPTER 8. TREES, RANDOM FORESTS AND CLASSIFICATION

rpart.plot(tree.pruned, extra=104, box.palette="GnBu",
branch.lty=3, shadow.col="gray", nn=TRUE)

sex = male

age >= 9.5

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

age >= 16

parch >= 3.5

age >= 28

age < 22

yes no

1

2

4

5

10 11

3

6

12

13

26

52

53

106

107

214 215 27 7

sex = male

age >= 9.5

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

age >= 16

parch >= 3.5

age >= 28

age < 22

died
.62 .38
100%

died
.81 .19

64%

died
.83 .17

61%

survived
.47 .53

4%

died
.95 .05

2%

survived
.11 .89

2%

survived
.27 .73

36%

died
.51 .49

17%

died
.86 .14

2%

survived
.47 .53

15%

died
.51 .49

12%

died
.89 .11

1%

survived
.49 .51

12%

died
.61 .39

3%

survived
.44 .56

8%

died
.61 .39

2%

survived
.38 .62

6%

survived
.27 .73

3%

survived
.07 .93

19%

yes no

1

2

4

5

10 11

3

6

12

13

26

52

53

106

107

214 215 27 7

conf.matrix <- round(prop.table(table(ptitanic$survived, predict(tree.pruned, type="class"))), 2)
rownames(conf.matrix) <- c("Actually died", "Actually Survived")
colnames(conf.matrix) <- c("Predicted dead", "Predicted Survived")
conf.matrix

##
Predicted dead Predicted Survived
Actually died 0.57 0.05
Actually Survived 0.13 0.25

Another way to check the output of the classifier is with a ROC (Receiver Operating Char-
acteristics) Curve. This plots the true positive rate against the false positive rate, and gives
us a visual feedback as to how well our model is performing. The package we will use for
this is ROCR.
library(ROCR)
fit.pr = predict(tree.pruned, type="prob")[,2]
fit.pred = prediction(fit.pr, ptitanic$survived)
fit.perf = performance(fit.pred,"tpr","fpr")
plot(fit.perf,lwd=2,col="blue",

main="ROC: Classification Trees on Titanic Dataset")
abline(a=0,b=1)

8.4. HOW DOES A TREE DECIDE WHERE TO SPLIT? 77

ROC: Classification Trees on Titanic Dataset

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ordinarily, using the confusion matrix for creating the ROC curve would give us a single
point (as it is based off True positive rate vs false positive rate). What we do here is ask
the prediction algorithm to give class probabilities to each observation, and then we plot the
performance of the prediction using class probability as a cutoff. This gives us the “smooth”
ROC curve.

8.4 How does a tree decide where to split?

A bit more theory, before we go further. This part has been taken from this great tutorial.

8.5 Third example.

The dataset I will be using for this third example is the “Adult” dataset hosted on UCI’s
Machine Learning Repository. It contains approximately 32000 observations, with 15 vari-
ables. The dependent variable that in all cases we will be trying to predict is whether or not
an “individual” has an income greater than $50,000 a year.

Here is the set of variables contained in the data.

• age – The age of the individual
• type_employer – The type of employer the individual has. Whether they are govern-

ment, military, private, an d so on.

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

78 CHAPTER 8. TREES, RANDOM FORESTS AND CLASSIFICATION

• fnlwgt – The number of people the census takers believe that observation represents.
We will be ignoring this variable

• education – The highest level of education achieved for that individual
• education_num – Highest level of education in numerical form
• marital – Marital status of the individual
• occupation – The occupation of the individual
• relationship – A bit more difficult to explain. Contains family relationship values like

husband, father, and so on, but only contains one per observation. I’m not sure what
this is supposed to represent

• race – descriptions of the individuals race. Black, White, Eskimo, and so on
• sex – Biological Sex
• capital_gain – Capital gains recorded
• capital_loss – Capital Losses recorded
• hr_per_week – Hours worked per week
• country – Country of origin for person
• income – Boolean Variable. Whether or not the person makes more than $50,000 per

annum income.

8.6 References

• Trees with the rpart package
• Wholesale customers Data Set Origin of the data set of first example.
• Titanic: Getting Started With R - Part 3: Decision Trees. First understanding on

how to read the graph of a tree.

• Classification and Regression Trees (CART) with rpart and rpart.plot. Got the
Titanic example from there as well as a first understanding on pruning.

• Statistical Consulting Group. We learn here how to use the ROC curve. And we got
out of it the adultdataset.

• A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python). This
website is a real gems as always.

• Stephen Milborrow. rpart.plot: Plot rpart Models. An Enhanced Version of plot.rpart.,
2016. R Package. It is important to cite the very generous people who dedicates so
much of their time to offer us great tool.

http://machine-master.blogspot.com/2012/11/trees-with-rpart-package.html
https://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://trevorstephens.com/kaggle-titanic-tutorial/r-part-3-decision-trees/
https://rpubs.com/minma/cart_with_rpart
http://scg.sdsu.edu/ctrees_r/
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

Chapter 9

Model Evaluation

9.1 Biais variance tradeoff

9.2 Bagging

9.3 Cross Validation

79

80 CHAPTER 9. MODEL EVALUATION

Figure 9.1: Biais Variance tradeoff

Chapter 10

Case Study - Predicting Survivalship
on the Titanic

This chapter demonstrates another example of classification with machine learning. Kaggle
made this exercise quite popular.

In this study, the training and test sets have already been defined, so we

10.1 Import the data.

We have put our data into our google drive here and here. You can find them on Kaggle if
need be.
library(tidyverse)

train_set <- read_csv("dataset/Kaggle_Titanic_train.csv")
test_set <- read_csv("dataset/Kaggle_Titanic_test.csv")

Let's bind both set of data for our exploratory analysis.
df2 <- bind_rows(train_set, test_set)

Let's have a first glimpse to our data
glimpse(df2)

Observations: 1,309
Variables: 12
$ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
$ Survived <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,...
$ Pclass <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3,...
$ Name <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bra...
$ Sex <chr> "male", "female", "female", "female", "male", "mal...

81

https://drive.google.com/open?id=0ByHtvgo2NGDMV2VBWklMNFpVaVE
https://drive.google.com/open?id=0ByHtvgo2NGDMaFByZWRxVEJSeDg

82 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

$ Age <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, ...
$ SibSp <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4,...
$ Parch <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1,...
$ Ticket <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "1138...
$ Fare <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, ...
$ Cabin <chr> NA, "C85", NA, "C123", NA, NA, "E46", NA, NA, NA, ...
$ Embarked <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", ...

10.2 Tidy the data

One can already see that we should put Survived, Sex and Embarked as factor.
df2$Survived <- factor(df2$Survived)
df2$Sex <- factor(df2$Sex)
df2$Embarked <- factor(df2$Embarked)

10.3 Understand the data

This step consists in massaging our variables to see if we can construct new ones or create
additional meaning from what we have. This step require some additional knowledge related
to the data and getting familiar with the topics at hand.

10.3.1 A. Transform the data

The great thing about this data set is all the features engineering one can do to increase the
predictibilty power of our model.

10.3.1.1 Dealing with names.

One of the thing one can notice is the title associated with the name. The full names on
their own might have little predictibility power, but the title in the name might have some
value and can be used as an additional variables.
glimpse(df2$Name)

chr [1:1309] "Braund, Mr. Owen Harris" ...
gsub is never fun to use. But we need to strip the cell up to the comma,
then everything after the point of the title.
df2$title <- gsub('(.*,)|(\\..*)', "", df2$Name)
table(df2$Sex,df2$title)

10.3. UNDERSTAND THE DATA 83

##
Capt Col Don Dona Dr Jonkheer Lady Major Master Miss
female 0 0 0 1 1 0 1 0 0 260
male 1 4 1 0 7 1 0 2 61 0
##
Mlle Mme Mr Mrs Ms Rev Sir the Countess
female 2 1 0 197 2 0 0 1
male 0 0 757 0 0 8 1 0

Some titles are just translations from other languages. Let’s regroup those. Some other
titles aren’t occuring often and would not justify to have a category on their own. We have
regroup some titles under common category. There is some arbitraire in here.
df2$title <- gsub("Mlle", "Miss", df2$title)
df2$title <- gsub("Mme", "Mrs", df2$title)
df2$title <- gsub("Ms", "Miss", df2$title)
df2$title <- gsub("Jonkheer", "Mr", df2$title)
df2$title <- gsub("Capt|Col|Major", "Army", df2$title)
df2$title <- gsub("Don|Dona|Lady|Sir|the Countess", "Nobility", df2$title)
df2$title <- gsub("Dr|Rev", "Others", df2$title)
df2$title <- factor(df2$title)
df2$title <- factor(df2$title,

levels(df2$title)[c(5, 3, 2, 4, 7, 1, 6)])
table(df2$Sex, df2$title)

##
Mrs Miss Master Mr Others Army Nobility
female 198 264 0 0 1 0 3
male 0 0 61 758 15 7 2

It would be also interesting in fact to check the proportion of survivors for each type of title.
round(prop.table(table(df2$Survived, df2$title), 2), 2)

##
Mrs Miss Master Mr Others Army Nobility
0 0.21 0.30 0.42 0.84 0.77 0.60 0.25
1 0.79 0.70 0.57 0.16 0.23 0.40 0.75

We can notice that Mrs are more likely to survive than Miss. As expected, our Mr have a
very low likelyhood of success. Our Noble title managed mostly to survive.

Our next step is to create a Last_Name variable. This could be helpful as the ways family
have escaped the boat might hold some pattens.
To get the last name we strip everything after the first comma.
df2$last_name <- gsub(",.*", "", df2$Name)

We can now put this as factor and check how many families.

84 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

df2$last_name <- factor(df2$last_name)

So we have 875 different families on board of the Titanic. Of course, there might have
different families with the same last name. If that’s the case, we won’t know.

10.3.2 A. Vizualize with families.

We could add a variable about the family size.
df2$family_size <- df2$SibSp + df2$Parch + 1

If we plot that to check survivalship in function of family size, one can notice interesting
patterns.
x <- df2[1:891,]
ggplot(x, aes(x = family_size, fill = factor(Survived))) +

geom_bar(stat = 'count', position = "dodge") +
scale_x_continuous(breaks = c(1:11)) +
labs(x = "Family Size", fill = "Survived",

title = "Survivalship by Family Size") +
theme(legend.position = c(0.9, 0.8), panel.background = NULL)

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11

Family Size

co
un

t

Survived

0

1

Survivalship by Family Size

Obviously, we only have the survivalship for the train set of data, as we have to guess the

10.3. UNDERSTAND THE DATA 85

test set of data. So from what we have, there is a clear advantage in being a family of 2, 3
or 4. We could collapse the variable Family_Size into 3 levels.
df2$family_size_type[df2$family_size == 1] <- "Singleton"
df2$family_size_type[df2$family_size <= 4 & df2$family_size > 1] <- "Small"
df2$family_size_type[df2$family_size > 4] <- "Large"
df2$family_size_type <- factor(df2$family_size_type, levels = c("Singleton", "Small", "Large"))

We can see how many people in each category, then we plot the proportion of survivers in
each category.
df3 <- df2[1:891,]
table(df3$Survived, df3$family_size_type)

##
Singleton Small Large
0 374 123 52
1 163 169 10
df3 <- as_tibble(df3)

library(ggmosaic)
ggplot(data = df3) +

geom_mosaic(aes(weight = 1, x = product(family_size_type),
fill = factor(Survived), na.rm = TRUE)) +

labs(x = "Family Size", y = "Proportion") +
theme(panel.background = NULL)

86 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

0.00

0.25

0.50

0.75

1.00

Singleton Small Large

Family Size

P
ro

po
rt

io
n factor(Survived)

0

1

Clearly, there is an advantage in being in a family of size 2, 3 or 4; while there is a disadven-
tage in being part of of a bigger family.

We can try to digg in a bit further with our new family size and titles. For people who are
part of a Small family size, which title are more likely to surived?
df4 <- df3 %>% dplyr::filter(family_size_type == "Small")
table(df4$Survived, df4$title)

##
Mrs Miss Master Mr Others Army Nobility
0 17 13 0 89 3 1 0
1 78 46 22 20 1 0 2
ggplot(data = df4) +

geom_mosaic(aes(x = product(title), fill = Survived)) +
labs(x = "Survivorship for Small Families in function of their title",

y = "Proportion") +
theme(panel.background = NULL, axis.text.x = element_text(angle=90, vjust=1))

10.3. UNDERSTAND THE DATA 87

0.00

0.25

0.50

0.75

1.00

 M
rs

 M
is

s

 M
as

te
r

 M
r

 O
th

er
s

 A
rm

y
 N

ob
ili

ty

Survivorship for Small Families in function of their title

P
ro

po
rt

io
n Survived

0

1

All masters in small families have survived. Miss & Mrs in small family size have also lots
of chane of survival.

Similarly, for people who embarked alone (Singleton), which title are more likely to surived?
df4 <- df3 %>% filter(family_size_type == "Singleton")
table(df4$Survived, df4$title)

##
Mrs Miss Master Mr Others Army Nobility
0 2 25 0 337 7 2 1
1 19 78 0 61 2 2 1
ggplot(data = df4) + geom_mosaic(aes(x = product(title), fill = Survived)) +

labs(x = "Survivorship for people who boarded alone in function of their title",
y = "Proportion") +

theme(panel.background = NULL, axis.text.x = element_text(angle=90, vjust=1))

88 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

0.00

0.25

0.50

0.75

1.00

 M
rs

 M
is

s

 M
as

te
r

 M
r

 O
th

er
s

 A
rm

y
 N

ob
ili

ty

Survivorship for people who boarded alone in function of their title

P
ro

po
rt

io
n Survived

0

1

It might not comes as clear, but we could do the same for title and gender. Vertically the
stacks are ordered as Singleton then Small then Large.
ggplot(data = df3) + geom_mosaic(aes(x = product(family_size_type, title), fill = Survived)) +

labs(x = "Survivorship in function of family type and title summary",
y = "Proportion") +

theme(panel.background = NULL, axis.text.x = element_text(angle=90, vjust=1))

10.4. A. VISUALIZE WITH CABINS. 89

0.00

0.25

0.50

0.75

1.00

0:
 M

rs

1:
 M

rs

0:
 M

is
s

1:
 M

is
s

0:
 M

as
te

r

1:
 M

as
te

r

0:
 M

r

1:
 M

r

0:
 O

th
er

s
1:

 O
th

er
s

0:
 A

rm
y

1:
 A

rm
y

0:
 N

ob
ili

ty
1:

 N
ob

ili
ty

Survivorship in function of family type and title summary

P
ro

po
rt

io
n Survived

0

1

10.4 A. Visualize with cabins.

Although there are many missing data there, we can use the cabin number given to passengers.
The first letter of the cabin number correspond to the deck on the boat. So let’s strip that
deck location from the cabin number.
df3$deck <- gsub("([A-Z]+).*", "\\1", df3$Cabin)
df4 <- df3 %>% filter(!is.na(deck))

table(df3$Survived, df3$deck)

##
A B C D E F G T
0 8 12 24 8 8 5 2 1
1 7 35 35 25 24 8 2 0
ggplot(data = df4) + geom_mosaic(aes(x = product(deck), fill = Survived)) +

labs(x = "Survivorship in function of Deck Location", y = "Proportion") +
theme(panel.background = NULL, axis.text.x = element_text(angle=90, vjust=1))

90 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

0.00

0.25

0.50

0.75

1.00

A B C D E F G T

Survivorship in function of Deck Location

P
ro

po
rt

io
n Survived

0

1

detach("package:ggmosaic", unload=TRUE)

There is a bit of an anomaly here as it almost as if most people survived. Now let’s keep in
mind, that this is only for people which we have their cabin data.

Let’s have a look at how the Passenger Class are distributed on the decks. As we are also
finishing this first round of feature engineering, let’s just mention also how the Passenger
Class is affecting survivalship.
table(df3$Pclass, df3$deck)

##
A B C D E F G T
1 15 47 59 29 25 0 0 1
2 0 0 0 4 4 8 0 0
3 0 0 0 0 3 5 4 0
round(prop.table(table(df3$Survived, df3$Pclass), 2), 2)

##
1 2 3
0 0.37 0.53 0.76
1 0.63 0.47 0.24

More first class people have survived than other classes.

10.5. B. TRANSFORM DEALING WITH MISSING DATA. 91

10.5 B. Transform Dealing with missing data.

10.5.1 Overview.

I found this very cool package called visdat based on ggplot2 that help us visualize easily
missing data.
visdat::vis_dat(df2)

Nam
e

Tick
et

Cab
in

Sur
viv

ed

Sex

Em
ba

rk
ed

titl
e

las
t_

na
m

e

fam
ily

_s
ize

_t
yp

e

Pas
se

ng
er

Id

Pcla
ss

SibS
p

Par
ch

Age Fa
re

fam
ily

_s
ize

0

500

1000

O
bs

er
va

tio
ns

Type

character

factor

integer

numeric

NA

Straight away one can see that the variables cabin and and Age have quite a lot of missing
data.
For more accuracy one could check
fun1 <- function(x){sum(is.na(x))}
map_dbl(df2, fun1)

PassengerId Survived Pclass Name
0 418 0 0
Sex Age SibSp Parch
0 263 0 0
Ticket Fare Cabin Embarked
0 1 1014 2
title last_name family_size family_size_type
0 0 0 0

So we can see some missing data in Fare and in Embarked as well.
Let’s deal with these last 2 variables first.

92 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

10.5.1.1 Basic Replacement.

We first start with the dessert and the variables that have few missing data. For those, one
can take the median of similar data.
y <- which(is.na(df2$Embarked))
glimpse(df2[y,])

Observations: 2
Variables: 16
$ PassengerId <int> 62, 830
$ Survived <fctr> 1, 1
$ Pclass <int> 1, 1
$ Name <chr> "Icard, Miss. Amelie", "Stone, Mrs. George Ne...
$ Sex <fctr> female, female
$ Age <dbl> 38, 62
$ SibSp <int> 0, 0
$ Parch <int> 0, 0
$ Ticket <chr> "113572", "113572"
$ Fare <dbl> 80, 80
$ Cabin <chr> "B28", "B28"
$ Embarked <fctr> NA, NA
$ title <fctr> Miss, Mrs
$ last_name <fctr> Icard, Stone
$ family_size <dbl> 1, 1
$ family_size_type <fctr> Singleton, Singleton

So the 2 passengers that have no data on the origin of their embarqument are 2 ladies that
boarded alone and that shared the same room in first class and that paid $80.

Let’s see who might have paid $80 for a fare.
y <- df2 %>% filter(!is.na(Embarked))
ggplot(y, aes(x = Embarked, y = Fare, fill = factor(Pclass))) +

geom_boxplot() +
scale_y_continuous(labels = scales::dollar, limits = c(0, 250)) +
labs(fill = "Passenger \n Class") +
geom_hline(aes(yintercept = 80), color = "red", linetype = "dashed", lwd = 1) +
theme(legend.position = c(0.9, 0.8), panel.background = NULL)

10.5. B. TRANSFORM DEALING WITH MISSING DATA. 93

$0

$50

$100

$150

$200

$250

C Q S

Embarked

Fa
re

Passenger
 Class

1

2

3

Following this graph, the 2 passengers without origin of embarcation are most likely from
“C”. That said, one can argue that the 2 ladies should have embarked from “S” as this is
where most people embarked as shown in this table.
table(df2$Embarked)

##
C Q S
270 123 914

That said, if we filter our data for the demographics of these 2 ladies, the likelhood of coming
from “S” decreased quite a bit.
x <- df2 %>% filter(Sex == "female", Pclass == 1, family_size == 1)
table(x$Embarked)

##
C Q S
30 0 20

So if we go with median price and with the demographics of the ladies, it would be more
likely that they come from “C”. So let’s input that.
df2$Embarked[c(62, 830)] <- "C"

Now onto that missing Fare data

94 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

y <- which(is.na(df2$Fare))
glimpse(df2[y,])

Observations: 1
Variables: 16
$ PassengerId <int> 1044
$ Survived <fctr> NA
$ Pclass <int> 3
$ Name <chr> "Storey, Mr. Thomas"
$ Sex <fctr> male
$ Age <dbl> 60.5
$ SibSp <int> 0
$ Parch <int> 0
$ Ticket <chr> "3701"
$ Fare <dbl> NA
$ Cabin <chr> NA
$ Embarked <fctr> S
$ title <fctr> Mr
$ last_name <fctr> Storey
$ family_size <dbl> 1
$ family_size_type <fctr> Singleton

That passenger is a male that boarded in Southampton in third class. So let’s take the
median price for similar passagers.
y <- df2 %>% filter(Embarked == "S" & Pclass == "3" & Sex == "male" &

family_size == 1 & Age > 40)
median(y$Fare, na.rm = TRUE)

[1] 7.8521
df2$Fare[1044] <- median(y$Fare, na.rm = TRUE)

10.5.1.2 Predictive modeling replacement.

First, we’ll focus on the Age variable.
There are several methods to input missing data. We’ll try 2 different ones in here.
But before we can go forward, we have to factorise some variables.
Let’s do the same with Sibsp and Parch
df2$Pclass <- factor(df2$Pclass)

The first method we’ll be using is with the missForest package.
y <- df2 %>% select(Pclass, Sex, Fare, Embarked, title, family_size, SibSp, Parch, Age)
y <- data.frame(y)

10.5. B. TRANSFORM DEALING WITH MISSING DATA. 95

library(missForest)
z1 <- missForest(y, maxiter = 50, ntree = 500)
z1 <- z1[[1]]

To view the new ages
View(z1[[1]])

detach("package:missForest", unload=TRUE)

The process is fairly rapid on my computer (around 10~15 seconds)

Our second method takes slightly more time.
This time we are using the mice package.
y <- df2 %>% select(Pclass, Sex, Fare, Embarked, title, family_size, SibSp, Parch, Age)
y$Pclass <- factor(y$Pclass)
y$family_size <- factor(y$family_size)
y <- data.frame(y)

library(mice)
mice_mod <- mice(y, method = 'rf')
z2 <- complete(mice_mod)

To view the new ages
#View(z2[[1]])

detach("package:mice", unload=TRUE)

let’s compare both type of imputations.
p1 <- ggplot(df2, aes(x = df2$Age)) +

geom_histogram(aes(y = ..density.., fill = ..count..),binwidth = 5) +
labs(x = "Age", y = "Frequency", fil = "Survived") +
theme(legend.position = "none")

p1

96 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

0.00

0.01

0.02

0.03

0 20 40 60 80

Age

F
re

qu
en

cy

p2 <- ggplot(z1, aes(x = z1$Age)) +
geom_histogram(aes(y = ..density.., fill = ..count..),binwidth = 5) +
labs(x = "Age", y = "Frequency", fil = "Survived") +
theme(legend.position = "none")

p3 <- ggplot(z2, aes(x = z2$Age)) +
geom_histogram(aes(y = ..density.., fill = ..count..),binwidth = 5) +
labs(x = "Age", y = "Frequency", fil = "Survived") +
theme(legend.position = "none")

multiplot(p1, p2, p3, cols = 3)

It does seem like our second method for imputation follow better our first graph. So let’s
use that one and input our predicted age into our main dataframe.
df2$Age <- z2$Age

10.6. REFERENCES. 97

10.5.2 C. Transform More feature engineering with the ages and
others.

Now that we have filled the NA for the age variable. we can massage a bit more that variable.
We can create 3 more variables: Infant from 0 to 5 years old. Child from 5 to 15 years old.
Mothers if it is a woman with the variable Parch which is greater than one.
df2$infant <- factor(if_else(df2$Age <= 5, 1, 0))
df2$child <- factor(if_else((df2$Age > 5 & df2$Age < 15), 1, 0))

df2$mother <- factor(if_else((df2$Sex == "female" & df2$Parch != 0), 1, 0))
df2$single <- factor(if_else((df2$SibSp + df2$Parch + 1 == 1), 1, 0))

10.6 References.

• Exploring the titanic dataset from Megan Risdal. here

• The visdat package. here

• The ggmosaic package. here

https://www.kaggle.com/mrisdal/titanic/exploring-survival-on-the-titanic
https://github.com/njtierney/visdat
https://github.com/haleyjeppson/ggmosaic

98 CHAPTER 10. CASE STUDY - PREDICTING SURVIVALSHIP ON THE TITANIC

Chapter 11

Case Study - Mushrooms
Classification

This example demonstrates how to classify muhsrooms as edible or not. It also answer the
question: what are the main characteristics of an edible mushroom?

This blog post gave us first the idea and we followed most of it. We also noticed that Kaggle
has put online the same data set and classification exercise. We have taken inspiration from
some posts here and here

The data set is available on the Machine Learning Repository of the UC Irvine website.

11.1 Import the data

The data set is given to us in a rough form and quite a bit of editing is necessary.
Load the data - we downloaded the data from the website and saved it into a .csv file
library(tidyverse)
mushroom <- read_csv("dataset/Mushroom.csv", col_names = FALSE)
glimpse(mushroom)

Observations: 8,124
Variables: 23
$ X1 <chr> "p", "e", "e", "p", "e", "e", "e", "e", "p", "e", "e", "e"...
$ X2 <chr> "x", "x", "b", "x", "x", "x", "b", "b", "x", "b", "x", "x"...
$ X3 <chr> "s", "s", "s", "y", "s", "y", "s", "y", "y", "s", "y", "y"...
$ X4 <chr> "n", "y", "w", "w", "g", "y", "w", "w", "w", "y", "y", "y"...
$ X5 <chr> "t", "t", "t", "t", "f", "t", "t", "t", "t", "t", "t", "t"...
$ X6 <chr> "p", "a", "l", "p", "n", "a", "a", "l", "p", "a", "l", "a"...
$ X7 <chr> "f", "f", "f", "f", "f", "f", "f", "f", "f", "f", "f", "f"...
$ X8 <chr> "c", "c", "c", "c", "w", "c", "c", "c", "c", "c", "c", "c"...
$ X9 <chr> "n", "b", "b", "n", "b", "b", "b", "b", "n", "b", "b", "b"...

99

https://stoltzmaniac.com/random-forest-classification-of-mushrooms/
https://www.kaggle.com/abhishekheads/d/uciml/mushroom-classification/walk-through-of-different-classification-models
https://www.kaggle.com/jhuno137/d/uciml/mushroom-classification/classification-tree-using-rpart-100-accuracy
http://archive.ics.uci.edu/ml/datasets/Mushroom

100 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

$ X10 <chr> "k", "k", "n", "n", "k", "n", "g", "n", "p", "g", "g", "n"...
$ X11 <chr> "e", "e", "e", "e", "t", "e", "e", "e", "e", "e", "e", "e"...
$ X12 <chr> "e", "c", "c", "e", "e", "c", "c", "c", "e", "c", "c", "c"...
$ X13 <chr> "s", "s", "s", "s", "s", "s", "s", "s", "s", "s", "s", "s"...
$ X14 <chr> "s", "s", "s", "s", "s", "s", "s", "s", "s", "s", "s", "s"...
$ X15 <chr> "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w"...
$ X16 <chr> "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w"...
$ X17 <chr> "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p"...
$ X18 <chr> "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w", "w"...
$ X19 <chr> "o", "o", "o", "o", "o", "o", "o", "o", "o", "o", "o", "o"...
$ X20 <chr> "p", "p", "p", "p", "e", "p", "p", "p", "p", "p", "p", "p"...
$ X21 <chr> "k", "n", "n", "k", "n", "k", "k", "n", "k", "k", "n", "k"...
$ X22 <chr> "s", "n", "n", "s", "a", "n", "n", "s", "v", "s", "n", "s"...
$ X23 <chr> "u", "g", "m", "u", "g", "g", "m", "m", "g", "m", "g", "m"...

Basically we have 8124 mushrooms in the dataset. And each observation consists of 23
variables. As it stands, the data frame doesn’t look very meaningfull. We have to go back
to the source to bring meaning to each of the variables and to the various levels of the
categorical variables.

11.2 Tidy the data

This is the least fun part of the workflow.
We’ll start by giving names to each of the variables, then we specify the category for each
variable. It is not necessary to do so but it does add meaning to what we do.
Rename the variables
colnames(mushroom) <- c("edibility", "cap_shape", "cap_surface",

"cap_color", "bruises", "odor",
"gill_attachement", "gill_spacing", "gill_size",
"gill_color", "stalk_shape", "stalk_root",
"stalk_surface_above_ring", "stalk_surface_below_ring", "stalk_color_above_ring",
"stalk_color_below_ring", "veil_type", "veil_color",
"ring_number", "ring_type", "spore_print_color",
"population", "habitat")

Defining the levels for the categorical variables
We make each variable as a factor
mushroom <- mushroom %>% map_df(function(.x) as.factor(.x))

We redefine each of the category for each of the variables
levels(mushroom$edibility) <- c("edible", "poisonous")
levels(mushroom$cap_shape) <- c("bell", "conical", "flat", "knobbed", "sunken", "convex")
levels(mushroom$cap_color) <- c("buff", "cinnamon", "red", "gray", "brown", "pink",

11.2. TIDY THE DATA 101

"green", "purple", "white", "yellow")
levels(mushroom$cap_surface) <- c("fibrous", "grooves", "scaly", "smooth")
levels(mushroom$bruises) <- c("no", "yes")
levels(mushroom$odor) <- c("almond", "creosote", "foul", "anise", "musty", "none", "pungent", "spicy", "fishy")
levels(mushroom$gill_attachement) <- c("attached", "free")
levels(mushroom$gill_spacing) <- c("close", "crowded")
levels(mushroom$gill_size) <- c("broad", "narrow")
levels(mushroom$gill_color) <- c("buff", "red", "gray", "chocolate", "black", "brown", "orange",

"pink", "green", "purple", "white", "yellow")
levels(mushroom$stalk_shape) <- c("enlarging", "tapering")
levels(mushroom$stalk_root) <- c("missing", "bulbous", "club", "equal", "rooted")
levels(mushroom$stalk_surface_above_ring) <- c("fibrous", "silky", "smooth", "scaly")
levels(mushroom$stalk_surface_below_ring) <- c("fibrous", "silky", "smooth", "scaly")
levels(mushroom$stalk_color_above_ring) <- c("buff", "cinnamon", "red", "gray", "brown", "pink",

"green", "purple", "white", "yellow")
levels(mushroom$stalk_color_below_ring) <- c("buff", "cinnamon", "red", "gray", "brown", "pink",

"green", "purple", "white", "yellow")
levels(mushroom$veil_type) <- "partial"
levels(mushroom$veil_color) <- c("brown", "orange", "white", "yellow")
levels(mushroom$ring_number) <- c("none", "one", "two")
levels(mushroom$ring_type) <- c("evanescent", "flaring", "large", "none", "pendant")
levels(mushroom$spore_print_color) <- c("buff", "chocolate", "black", "brown", "orange",

"green", "purple", "white", "yellow")
levels(mushroom$population) <- c("abundant", "clustered", "numerous", "scattered", "several", "solitary")
levels(mushroom$habitat) <- c("wood", "grasses", "leaves", "meadows", "paths", "urban", "waste")

Let’s check our changes one last time before diving into in the next phase of our data analysis
workflow.
glimpse(mushroom)

Observations: 8,124
Variables: 23
$ edibility <fctr> poisonous, edible, edible, poisonous...
$ cap_shape <fctr> convex, convex, bell, convex, convex...
$ cap_surface <fctr> scaly, scaly, scaly, smooth, scaly, ...
$ cap_color <fctr> brown, yellow, white, white, gray, y...
$ bruises <fctr> yes, yes, yes, yes, no, yes, yes, ye...
$ odor <fctr> pungent, almond, anise, pungent, non...
$ gill_attachement <fctr> free, free, free, free, free, free, ...
$ gill_spacing <fctr> close, close, close, close, crowded,...
$ gill_size <fctr> narrow, broad, broad, narrow, broad,...
$ gill_color <fctr> black, black, brown, brown, black, b...
$ stalk_shape <fctr> enlarging, enlarging, enlarging, enl...
$ stalk_root <fctr> equal, club, club, equal, equal, clu...

102 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

$ stalk_surface_above_ring <fctr> smooth, smooth, smooth, smooth, smoo...
$ stalk_surface_below_ring <fctr> smooth, smooth, smooth, smooth, smoo...
$ stalk_color_above_ring <fctr> purple, purple, purple, purple, purp...
$ stalk_color_below_ring <fctr> purple, purple, purple, purple, purp...
$ veil_type <fctr> partial, partial, partial, partial, ...
$ veil_color <fctr> white, white, white, white, white, w...
$ ring_number <fctr> one, one, one, one, one, one, one, o...
$ ring_type <fctr> pendant, pendant, pendant, pendant, ...
$ spore_print_color <fctr> black, brown, brown, black, brown, b...
$ population <fctr> scattered, numerous, numerous, scatt...
$ habitat <fctr> urban, grasses, meadows, urban, gras...

As each variables is categorical, let’s see how many categories are we speaking about?
number_class <- function(x){
x <- length(levels(x))

}

x <- mushroom %>% map_dbl(function(.x) number_class(.x)) %>% as_tibble() %>%
rownames_to_column() %>% arrange(desc(value))

colnames(x) <- c("Variable name", "Number of levels")
print(x)

A tibble: 23 x 2
`Variable name` `Number of levels`
<chr> <dbl>
1 gill_color 12
2 cap_color 10
3 stalk_color_above_ring 10
4 stalk_color_below_ring 10
5 odor 9
6 spore_print_color 9
7 habitat 7
8 cap_shape 6
9 population 6
10 stalk_root 5
... with 13 more rows

11.3 Understand the data

This is the circular phase of our dealing with data. This is where each of the transforming,
visualizing and modeling stage reinforce each other to create a better understanding.

11.3. UNDERSTAND THE DATA 103

11.3.1 Transform the data

We noticed from the previous section an issue with the veil_type variable. It has only one
factor. So basically, it does not bring any information. Furthermore, factor variable with
only one level do create issues later on at the modeling stage. R will throw out an error for
the categorical variable that has only one level.
So let’s take away that column.
mushroom <- mushroom %>% select(- veil_type)

Do we have any missing data? Most ML algorithms won’t work if we have missing data.
map_dbl(mushroom, function(.x) {sum(is.na(.x))})

edibility cap_shape cap_surface
0 0 0
cap_color bruises odor
0 0 0
gill_attachement gill_spacing gill_size
0 0 0
gill_color stalk_shape stalk_root
0 0 0
stalk_surface_above_ring stalk_surface_below_ring stalk_color_above_ring
0 0 0
stalk_color_below_ring veil_color ring_number
0 0 0
ring_type spore_print_color population
0 0 0
habitat
0

Lucky us! We have no missing data.

104 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

11.3.2 Visualize the data

This is one of the most important step in the DS process. This stage can gives us unexpected
insights and often allows us to ask the right questions.
library(ggplot2)
ggplot(mushroom, aes(x = cap_surface, y = cap_color, col = edibility)) +

geom_jitter(alpha = 0.5) +
scale_color_manual(breaks = c("edible", "poisonous"),

values = c("green", "red"))

buff

cinnamon

red

gray

brown

pink

green

purple

white

yellow

fibrous grooves scaly smooth

cap_surface

ca
p_

co
lo

r edibility

edible

poisonous

If we want to stay safe, better bet on fibrous surface. Stay especially away from smooth
surface, except if they are purple or green.
ggplot(mushroom, aes(x = cap_shape, y = cap_color, col = edibility)) +

geom_jitter(alpha = 0.5) +
scale_color_manual(breaks = c("edible", "poisonous"),

values = c("green", "red"))

11.3. UNDERSTAND THE DATA 105

buff

cinnamon

red

gray

brown

pink

green

purple

white

yellow

bell conical flat knobbed sunken convex

cap_shape

ca
p_

co
lo

r edibility

edible

poisonous

Again, in case one don’t know about mushroom, it is better to stay away from all shapes
except maybe for bell shape mushrooms.
ggplot(mushroom, aes(x = gill_color, y = cap_color, col = edibility)) +

geom_jitter(alpha = 0.5) +
scale_color_manual(breaks = c("edible", "poisonous"),

values = c("green", "red"))

106 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

buff

cinnamon

red

gray

brown

pink

green

purple

white

yellow

buff red graychocolateblack brownorange pink green purple white yellow

gill_color

ca
p_

co
lo

r edibility

edible

poisonous

ggplot(mushroom, aes(x = edibility, y = odor, col = edibility)) +
geom_jitter(alpha = 0.5) +
scale_color_manual(breaks = c("edible", "poisonous"),

values = c("green", "red"))

11.3. UNDERSTAND THE DATA 107

almond

creosote

foul

anise

musty

none

pungent

spicy

fishy

edible poisonous

edibility

od
or

edibility

edible

poisonous

Odor is defintely quite an informative predictor. Basically, if it smells fishy, spicy or pungent
just stay away. If it smells like anise or almond you can go ahead. If it doesn’t smell anything,
you have better chance that it is edible than not.

TO DO: put a comment on what we see TO DO: put a mosaic graph

11.3.3 Modeling

At this stage, we should have gathered enough information and insights on our data to choose
appropriate modeling techniques.

Before we go ahead, we need to split the data into a training and testing set
set.seed(1810)
mushsample <- caret::createDataPartition(y = mushroom$edibility, times = 1, p = 0.8, list = FALSE)
train_mushroom <- mushroom[mushsample,]
test_mushroom <- mushroom[-mushsample,]

We can check the quality of the splits in regards to our predicted (dependent) variable.
round(prop.table(table(mushroom$edibility)), 2)

##
edible poisonous

108 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

0.52 0.48
round(prop.table(table(train_mushroom$edibility)), 2)

##
edible poisonous
0.52 0.48
round(prop.table(table(test_mushroom$edibility)), 2)

##
edible poisonous
0.52 0.48

It seems like we have the right splits.

11.3.3.1 Use of Regression Tree

As we have many categorical variables, regression tree is an ideal classification tools for such
situation.
We’ll use the rpart package. Let’s give it a try without any customization.
library(rpart)
library(rpart.plot)
set.seed(1810)
model_tree <- rpart(edibility ~ ., data = train_mushroom, method = "class")
model_tree

n= 6500
##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 6500 3133 edible (0.51800000 0.48200000)
2) odor=almond,anise,none 3468 101 edible (0.97087659 0.02912341)
4) spore_print_color=buff,chocolate,black,brown,orange,purple,white,yellow 3408 41 edible (0.98796948 0.01203052) *
5) spore_print_color=green 60 0 poisonous (0.00000000 1.00000000) *
3) odor=creosote,foul,musty,pungent,spicy,fishy 3032 0 poisonous (0.00000000 1.00000000) *
caret::confusionMatrix(data=predict(model_tree, type = "class"),

reference = train_mushroom$edibility,
positive="edible")

Confusion Matrix and Statistics
##
Reference
Prediction edible poisonous

11.3. UNDERSTAND THE DATA 109

edible 3367 41
poisonous 0 3092
##
Accuracy : 0.9937
95% CI : (0.9915, 0.9955)
No Information Rate : 0.518
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 0.9874
Mcnemar's Test P-Value : 4.185e-10
##
Sensitivity : 1.0000
Specificity : 0.9869
Pos Pred Value : 0.9880
Neg Pred Value : 1.0000
Prevalence : 0.5180
Detection Rate : 0.5180
Detection Prevalence : 0.5243
Balanced Accuracy : 0.9935
##
'Positive' Class : edible
##

We have quite an issue here. 40 mushrooms have been predicted as edible but were actually
poisonous. That should not be happening. So we’ll set up a penalty for wrongly predicting
a mushroom as edible when in reality it is poisonous. A mistake the other way is not as
bad. At worst we miss on a good recipe! So let’s redo our tree with a penalty for wrongly
predicting poisonous. To do this, we introduce a penalty matrix that we’ll use as a parameter
in our rpart function.
penalty_matrix <- matrix(c(0, 1, 10, 0), byrow = TRUE, nrow = 2)
model_tree_penalty <- rpart(edibility ~ ., data = train_mushroom, method = "class",

parms = list(loss = penalty_matrix))

caret::confusionMatrix(data=predict(model_tree_penalty, type = "class"),
reference = train_mushroom$edibility,
positive="edible")

Confusion Matrix and Statistics
##
Reference
Prediction edible poisonous
edible 3367 0
poisonous 0 3133
##
Accuracy : 1

110 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

95% CI : (0.9994, 1)
No Information Rate : 0.518
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 1
Mcnemar's Test P-Value : NA
##
Sensitivity : 1.000
Specificity : 1.000
Pos Pred Value : 1.000
Neg Pred Value : 1.000
Prevalence : 0.518
Detection Rate : 0.518
Detection Prevalence : 0.518
Balanced Accuracy : 1.000
##
'Positive' Class : edible
##

So introducing a penalty did the job; it gave us a perfect prediction and saves us from a
jounrey at the hospital.

Another way to increase the accuracy of our tree model is to play on the cp parameter.
We start to build a tree with a very low cp (that is we’ll have a deep tree). The idea is that
we then prune it later.
model_tree <- rpart(edibility ~ ., data = train_mushroom,

method = "class", cp = 0.00001)

To prune a tree, we first have to find the cp that gives the lowest xerror or cross-validation
error. We can find the lowest xerror using either the printcp or plotcp function.
printcp(model_tree)

##
Classification tree:
rpart(formula = edibility ~ ., data = train_mushroom, method = "class",
cp = 1e-05)
##
Variables actually used in tree construction:
[1] cap_surface habitat odor
[4] spore_print_color stalk_color_below_ring stalk_root
##
Root node error: 3133/6500 = 0.482
##
n= 6500
##

11.3. UNDERSTAND THE DATA 111

CP nsplit rel error xerror xstd
1 0.9677625 0 1.0000000 1.0000000 0.01285833
2 0.0191510 1 0.0322375 0.0322375 0.00318273
3 0.0063837 2 0.0130865 0.0130865 0.00203731
4 0.0022343 3 0.0067028 0.0067028 0.00146032
5 0.0011171 5 0.0022343 0.0022343 0.00084402
6 0.0000100 7 0.0000000 0.0022343 0.00084402

We can see here that that the lowest xerror happen at the 5th split.
plotcp(model_tree)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inf 0.14 0.011 0.0038 0.0016 0.00011

1 2 3 4 6 8

size of tree

model_tree$cptable[which.min(model_tree$cptable[, "xerror"]), "CP"]

[1] 0.00111714

So now we can start pruning our tree with the cp that gives the lowest cross-validation error.
bestcp <- round(model_tree$cptable[which.min(model_tree$cptable[, "xerror"]), "CP"], 4)
model_tree_pruned <- prune(model_tree, cp = bestcp)

Let’s have a quick look at the tree as it stands
rpart.plot(model_tree_pruned, extra = 104, box.palette = "GnBu",

branch.lty = 3, shadow.col = "gray", nn = TRUE)

112 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

odor = almond,anise,none

spore_print_color = buff,chocolate,black,brown,orange,purple,white,yellow

stalk_color_below_ring = red,gray,brown,pink,green,purple

stalk_color_below_ring = red,gray,pink,green,purple

habitat = wood,grasses,meadows,paths,urban,waste

cap_surface = scaly

stalk_root = bulbous

yes no

1

2

4

8

16

32

33

66 67

17

34 35 9 5 3

odor = almond,anise,none

spore_print_color = buff,chocolate,black,brown,orange,purple,white,yellow

stalk_color_below_ring = red,gray,brown,pink,green,purple

stalk_color_below_ring = red,gray,pink,green,purple

habitat = wood,grasses,meadows,paths,urban,waste

cap_surface = scaly

stalk_root = bulbous

edible
.52 .48
100%

edible
.97 .03

53%

edible
.99 .01

52%

edible
.99 .01

52%

edible
1.00 .00

51%

edible
1.00 .00

49%

edible
.96 .04

3%

edible
1.00 .00

3%

poisonous
.00 1.00

0%

edible
.78 .22

1%

edible
1.00 .00

1%

poisonous
.00 1.00

0%

poisonous
.00 1.00

0%

poisonous
.00 1.00

1%

poisonous
.00 1.00

47%

yes no

1

2

4

8

16

32

33

66 67

17

34 35 9 5 3

How does the model perform on the train data?
#table(train_mushroom$edibility, predict(model_tree, type="class"))

caret::confusionMatrix(data=predict(model_tree_pruned, type = "class"),
reference = train_mushroom$edibility,
positive="edible")

Confusion Matrix and Statistics
##
Reference
Prediction edible poisonous
edible 3367 0
poisonous 0 3133
##
Accuracy : 1
95% CI : (0.9994, 1)
No Information Rate : 0.518
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 1
Mcnemar's Test P-Value : NA
##
Sensitivity : 1.000
Specificity : 1.000

11.3. UNDERSTAND THE DATA 113

Pos Pred Value : 1.000
Neg Pred Value : 1.000
Prevalence : 0.518
Detection Rate : 0.518
Detection Prevalence : 0.518
Balanced Accuracy : 1.000
##
'Positive' Class : edible
##

It seems like we have a perfect accuracy on our training set. It is quite rare to have such
perfect accuracy.

Let’s check how it fares on the testing set.
test_tree <- predict(model_tree, newdata = test_mushroom)
caret::confusionMatrix(data = predict(model_tree, newdata = test_mushroom, type = "class"),

reference = test_mushroom$edibility,
positive = "edible")

Confusion Matrix and Statistics
##
Reference
Prediction edible poisonous
edible 841 0
poisonous 0 783
##
Accuracy : 1
95% CI : (0.9977, 1)
No Information Rate : 0.5179
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 1
Mcnemar's Test P-Value : NA
##
Sensitivity : 1.0000
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 1.0000
Prevalence : 0.5179
Detection Rate : 0.5179
Detection Prevalence : 0.5179
Balanced Accuracy : 1.0000
##
'Positive' Class : edible
##

114 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

Perfect prediction here as well.

11.3.3.2 Use of Random Forest

We usually use random forest if a tree is not enough. In this case, as we have perfect
prediction using a single tree, it is not really necessary to use a Random Forest algorithm.
We just use for learning sake without tuning any of the parameters.
library(randomForest)
model_rf <- randomForest(edibility ~ ., ntree = 50, data = train_mushroom)
plot(model_rf)

0 10 20 30 40 50

0.
00

00
0.

00
10

0.
00

20

model_rf

trees

E
rr

or

The
default number of trees for the random forest is 500; we just use 50 here. As we can see on
the plot, above 20 trees, the error isn’t decreasing anymore. And actually, the error seems
to be 0 or almost 0.
The next step can tell us this more accurately.
print(model_rf)

##
Call:
randomForest(formula = edibility ~ ., data = train_mushroom, ntree = 50)
Type of random forest: classification
Number of trees: 50
No. of variables tried at each split: 4
##

11.3. UNDERSTAND THE DATA 115

OOB estimate of error rate: 0%
Confusion matrix:
edible poisonous class.error
edible 3367 0 0
poisonous 0 3133 0

Altough it is not really necessary to this here as we have a perfect prediction, we can use
the confusionMatrix function from the caret pacakge.
caret::confusionMatrix(data = model_rf$predicted, reference = train_mushroom$edibility ,

positive = "edible")

Confusion Matrix and Statistics
##
Reference
Prediction edible poisonous
edible 3367 0
poisonous 0 3133
##
Accuracy : 1
95% CI : (0.9994, 1)
No Information Rate : 0.518
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 1
Mcnemar's Test P-Value : NA
##
Sensitivity : 1.000
Specificity : 1.000
Pos Pred Value : 1.000
Neg Pred Value : 1.000
Prevalence : 0.518
Detection Rate : 0.518
Detection Prevalence : 0.518
Balanced Accuracy : 1.000
##
'Positive' Class : edible
##

If we want to look at the most important variable in terms of predicting edibility in our
model, we can do that using the Mean Decreasing Gini
varImpPlot(model_rf, sort = TRUE,

n.var = 10, main = "The 10 variables with the most predictive power")

116 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

gill_spacing

population

ring_type

stalk_root

stalk_surface_below_ring

gill_size

stalk_surface_above_ring

gill_color

spore_print_color

odor

0 200 400 600 800 1000

The 10 variables with the most predictive power

MeanDecreaseGini

Another way to look at the predictible power of the variables is to use the importance
extractor function.
library(tibble)
importance(model_rf) %>% data.frame() %>%

rownames_to_column(var = "Variable") %>%
arrange(desc(MeanDecreaseGini)) %>%
head(10)

Variable MeanDecreaseGini
1 odor 1115.85522
2 spore_print_color 477.71557
3 gill_color 319.02467
4 stalk_surface_above_ring 235.59574
5 gill_size 194.56155
6 stalk_surface_below_ring 172.26749
7 stalk_root 132.26045
8 ring_type 129.88445
9 population 79.42030
10 gill_spacing 63.42436

We could compare that with the important variables from the classification tree obtained
above.
model_tree_penalty$variable.importance %>%

as_tibble() %>% rownames_to_column(var = "variable") %>%

11.3. UNDERSTAND THE DATA 117

arrange(desc(value)) %>% head(10)

A tibble: 10 x 2
variable value
<chr> <dbl>
1 odor 848.00494
2 spore_print_color 804.39831
3 gill_color 503.71270
4 stalk_surface_above_ring 501.28385
5 stalk_surface_below_ring 453.92877
6 ring_type 450.29286
7 ring_number 170.56141
8 stalk_root 117.78800
9 habitat 98.22176
10 stalk_color_below_ring 74.72602

Interestingly gill_size which is the 5th most important predictor in the random forest does
not appear in the top 10 of our classification tree.

Now we apply our model to our testing set.
test_rf <- predict(model_rf, newdata = test_mushroom)

Quick check on our prediction
table(test_rf, test_mushroom$edibility)

##
test_rf edible poisonous
edible 841 0
poisonous 0 783

Perfect Prediction!

11.3.3.3 Use of SVM

library(e1071)
model_svm <- svm(edibility ~. , data=train_mushroom, cost = 1000, gamma = 0.01)

Check the prediction
test_svm <- predict(model_svm, newdata = test_mushroom)

table(test_svm, test_mushroom$edibility)

##
test_svm edible poisonous

118 CHAPTER 11. CASE STUDY - MUSHROOMS CLASSIFICATION

edible 841 0
poisonous 0 783

And perfect prediction again!

11.4 Communication

With some fine tuning, a regression tree managed to predict accurately the edibility of
mushroom. They were 2 parameters to look at: the cpand the penalty matrix. Random
Forest and SVM achieved similar results out of the box.
The regression tree approach has to be prefered as it is a lot easier to grasp the results from
a tree than from a SVM algorithm.

For sure I will take my little tree picture next time I go shrooming. That said, I will still
only go with a good mycologist.

Chapter 12

Case Study - Wisconsin Breast
Cancer

This is another classification example. We have to classify breast tumors as malign or benign.

The dataset is available on the UCI Machine learning website as well as on [Kaggle](https:
//www.kaggle.com/uciml/breast-cancer-wisconsin-data.

We have taken ideas from several blogs listed below in the reference section.

12.1 Import the data

library(tidyverse)
df <- read_csv("dataset/BreastCancer.csv")

This is defintely an most important step:
Check for appropriate class on each of the variable.
glimpse(df)

Observations: 569
Variables: 32
$ id <int> 842302, 842517, 84300903, 84348301, 84...
$ diagnosis <chr> "M", "M", "M", "M", "M", "M", "M", "M"...
$ radius_mean <dbl> 17.990, 20.570, 19.690, 11.420, 20.290...
$ texture_mean <dbl> 10.38, 17.77, 21.25, 20.38, 14.34, 15....
$ perimeter_mean <dbl> 122.80, 132.90, 130.00, 77.58, 135.10,...
$ area_mean <dbl> 1001.0, 1326.0, 1203.0, 386.1, 1297.0,...
$ smoothness_mean <dbl> 0.11840, 0.08474, 0.10960, 0.14250, 0....
$ compactness_mean <dbl> 0.27760, 0.07864, 0.15990, 0.28390, 0....
$ concavity_mean <dbl> 0.30010, 0.08690, 0.19740, 0.24140, 0....

119

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

120 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

$ concave_points_mean <dbl> 0.14710, 0.07017, 0.12790, 0.10520, 0....
$ symmetry_mean <dbl> 0.2419, 0.1812, 0.2069, 0.2597, 0.1809...
$ fractal_dimension_mean <dbl> 0.07871, 0.05667, 0.05999, 0.09744, 0....
$ radius_se <dbl> 1.0950, 0.5435, 0.7456, 0.4956, 0.7572...
$ texture_se <dbl> 0.9053, 0.7339, 0.7869, 1.1560, 0.7813...
$ perimeter_se <dbl> 8.589, 3.398, 4.585, 3.445, 5.438, 2.2...
$ area_se <dbl> 153.40, 74.08, 94.03, 27.23, 94.44, 27...
$ smoothness_se <dbl> 0.006399, 0.005225, 0.006150, 0.009110...
$ compactness_se <dbl> 0.049040, 0.013080, 0.040060, 0.074580...
$ concavity_se <dbl> 0.05373, 0.01860, 0.03832, 0.05661, 0....
$ concave_points_se <dbl> 0.015870, 0.013400, 0.020580, 0.018670...
$ symmetry_se <dbl> 0.03003, 0.01389, 0.02250, 0.05963, 0....
$ fractal_dimension_se <dbl> 0.006193, 0.003532, 0.004571, 0.009208...
$ radius_worst <dbl> 25.38, 24.99, 23.57, 14.91, 22.54, 15....
$ texture_worst <dbl> 17.33, 23.41, 25.53, 26.50, 16.67, 23....
$ perimeter_worst <dbl> 184.60, 158.80, 152.50, 98.87, 152.20,...
$ area_worst <dbl> 2019.0, 1956.0, 1709.0, 567.7, 1575.0,...
$ smoothness_worst <dbl> 0.1622, 0.1238, 0.1444, 0.2098, 0.1374...
$ compactness_worst <dbl> 0.6656, 0.1866, 0.4245, 0.8663, 0.2050...
$ concavity_worst <dbl> 0.71190, 0.24160, 0.45040, 0.68690, 0....
$ concave_points_worst <dbl> 0.26540, 0.18600, 0.24300, 0.25750, 0....
$ symmetry_worst <dbl> 0.4601, 0.2750, 0.3613, 0.6638, 0.2364...
$ fractal_dimension_worst <dbl> 0.11890, 0.08902, 0.08758, 0.17300, 0....

So we have 569 observations with 32 variables. Ideally for so many variables, it would be
appropriate to get a few more observations.

12.2 Tidy the data

Basics change of variable type for the outcome variable and renaming of variables badly
encoded
df$diagnosis <- as.factor(df$diagnosis)

#df <- df %>% rename(concave_points_mean = `concave points_mean`,
concave_points_se = `concave points_se`,
concave_points_worst = `concave points_worst`)

As you might have noticed, in this case and the precedent we had very little to do here. This
is not usually the case.

12.3. UNDERSTAND THE DATA 121

12.3 Understand the data

This is the circular phase of our dealing with data. This is where each of the transforming,
visualizing and modeling stage reinforce each other to create a better understanding.

Check for missing values
map_int(df, function(.x) sum(is.na(.x)))

id diagnosis radius_mean
0 0 0
texture_mean perimeter_mean area_mean
0 0 0
smoothness_mean compactness_mean concavity_mean
0 0 0
concave_points_mean symmetry_mean fractal_dimension_mean
0 0 0
radius_se texture_se perimeter_se
0 0 0
area_se smoothness_se compactness_se
0 0 0
concavity_se concave_points_se symmetry_se
0 0 0
fractal_dimension_se radius_worst texture_worst
0 0 0
perimeter_worst area_worst smoothness_worst
0 0 0
compactness_worst concavity_worst concave_points_worst
0 0 0
symmetry_worst fractal_dimension_worst
0 0

Good news, there are no missing values.

In the case that there would be many missing values, we would go on the transforming data
for some appropriate imputation.

Let’s check how balanced is our response variable
round(prop.table(table(df$diagnosis)), 2)

##
B M
0.63 0.37

The response variable is slightly unbalanced.

Let’s look for correlation in the variables. Most ML algorithms assumed that the predictor
variables are independent from each others.

122 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

Let’s check for correlations. For an anlysis to be robust it is good to remove mutlicollinearity
(aka remove highly correlated predictors)
df_corr <- cor(df %>% select(-id, -diagnosis))
corrplot::corrplot(df_corr, order = "hclust", tl.cex = 1, addrect = 8)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

te
xt

ur
e_

m
ea

n
te

xt
ur

e_
w

or
st

ar
ea

_s
e

ra
di

us
_s

e
pe

rim
et

er
_s

e
ar

ea
_m

ea
n

ra
di

us
_m

ea
n

pe
rim

et
er

_m
ea

n
ar

ea
_w

or
st

ra
di

us
_w

or
st

pe
rim

et
er

_w
or

st
co

nc
av

e_
po

in
ts

_w
or

st
co

nc
av

ity
_m

ea
n

co
nc

av
e_

po
in

ts
_m

ea
n

sm
oo

th
ne

ss
_m

ea
n

sm
oo

th
ne

ss
_w

or
st

fr
ac

ta
l_

di
m

en
si

on
_m

ea
n

fr
ac

ta
l_

di
m

en
si

on
_w

or
st

co
m

pa
ct

ne
ss

_m
ea

n
co

m
pa

ct
ne

ss
_w

or
st

co
nc

av
ity

_w
or

st
sy

m
m

et
ry

_m
ea

n
sy

m
m

et
ry

_w
or

st
co

m
pa

ct
ne

ss
_s

e
fr

ac
ta

l_
di

m
en

si
on

_s
e

co
nc

av
ity

_s
e

co
nc

av
e_

po
in

ts
_s

e
te

xt
ur

e_
se

sm
oo

th
ne

ss
_s

e
sy

m
m

et
ry

_s
e

texture_mean
texture_worst

area_se
radius_se

perimeter_se
area_mean

radius_mean
perimeter_mean

area_worst
radius_worst

perimeter_worst
concave_points_worst

concavity_mean
concave_points_mean

smoothness_mean
smoothness_worst

fractal_dimension_mean
fractal_dimension_worst

compactness_mean
compactness_worst

concavity_worst
symmetry_mean
symmetry_worst
compactness_se

fractal_dimension_se
concavity_se

concave_points_se
texture_se

smoothness_se
symmetry_se

Indeed there are quite a few variables that are correlated. On the next step, we will remove
the highly correlated ones using the caret package.

12.3.1 Transform the data

library(caret)
The findcorrelation() function from caret package remove highly correlated predictors
based on whose correlation is above 0.9. This function uses a heuristic algorithm

12.3. UNDERSTAND THE DATA 123

to determine which variable should be removed instead of selecting blindly
df2 <- df %>% select(-findCorrelation(df_corr, cutoff = 0.9))

#Number of columns for our new data frame
ncol(df2)

[1] 22

So our new data frame df2 is 10 variables shorter.

12.3.2 Pre-process the data

12.3.2.1 Using PCA

Let’s first go on an unsupervised analysis with a PCA analysis.
To do so, we will remove the id and diagnosis variable, then we will also scale and ceter
the variables.
preproc_pca_df <- prcomp(df %>% select(-id, -diagnosis), scale = TRUE, center = TRUE)
summary(preproc_pca_df)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759
PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 0.82172 0.69037 0.6457 0.59219 0.5421 0.51104
Proportion of Variance 0.02251 0.01589 0.0139 0.01169 0.0098 0.00871
Cumulative Proportion 0.91010 0.92598 0.9399 0.95157 0.9614 0.97007
PC13 PC14 PC15 PC16 PC17 PC18
Standard deviation 0.49128 0.39624 0.30681 0.28260 0.24372 0.22939
Proportion of Variance 0.00805 0.00523 0.00314 0.00266 0.00198 0.00175
Cumulative Proportion 0.97812 0.98335 0.98649 0.98915 0.99113 0.99288
PC19 PC20 PC21 PC22 PC23 PC24
Standard deviation 0.22244 0.17652 0.1731 0.16565 0.15602 0.1344
Proportion of Variance 0.00165 0.00104 0.0010 0.00091 0.00081 0.0006
Cumulative Proportion 0.99453 0.99557 0.9966 0.99749 0.99830 0.9989
PC25 PC26 PC27 PC28 PC29 PC30
Standard deviation 0.12442 0.09043 0.08307 0.03987 0.02736 0.01153
Proportion of Variance 0.00052 0.00027 0.00023 0.00005 0.00002 0.00000
Cumulative Proportion 0.99942 0.99969 0.99992 0.99997 1.00000 1.00000
Calculate the proportion of variance explained
pca_df_var <- preproc_pca_df$sdev^2

124 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

pve_df <- pca_df_var / sum(pca_df_var)
cum_pve <- cumsum(pve_df)
pve_table <- tibble(comp = seq(1:ncol(df %>% select(-id, -diagnosis))), pve_df, cum_pve)

ggplot(pve_table, aes(x = comp, y = cum_pve)) +
geom_point() +
geom_abline(intercept = 0.95, color = "red", slope = 0) +
labs(x = "Number of components", y = "Cumulative Variance")

0.6

0.8

1.0

0 10 20 30

Number of components

C
um

ul
at

iv
e

V
ar

ia
nc

e

With the original dataset, 95% of the variance is explained with 10 PC’s.

Let’s check on the most influential variables for the first 2 components
pca_df <- as_tibble(preproc_pca_df$x)

ggplot(pca_df, aes(x = PC1, y = PC2, col = df$diagnosis)) + geom_point()

12.3. UNDERSTAND THE DATA 125

−10

−5

0

5

−15 −10 −5 0 5

PC1

P
C

2

df$diagnosis

B

M

It does look like the first 2 components managed to separate the diagnosis quite well. Lots
of potential here.

If we want to get a more detailled analysis of what variables are the most influential in the
first 2 components, we can use the ggfortify library.
library(ggfortify)
autoplot(preproc_pca_df, data = df, colour = 'diagnosis',

loadings = FALSE, loadings.label = TRUE, loadings.colour = "blue")

126 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

radius_mean

texture_mean

perimeter_meanarea_mean

smoothness_mean
compactness_mean

concavity_mean

concave_points_mean

symmetry_mean

fractal_dimension_mean

radius_se

texture_se

perimeter_se

area_se

smoothness_se
compactness_se

concavity_se

concave_points_se

symmetry_se

fractal_dimension_se

radius_worst

texture_worst

perimeter_worst
area_worst

smoothness_worst
compactness_worst

concavity_worst

concave_points_worst

symmetry_worst

fractal_dimension_worst

−0.2

−0.1

0.0

0.1

−0.2 −0.1 0.0

PC1

P
C

2

diagnosis

B

M

Let’s visuzalize the first 3 components.
df_pcs <- cbind(as_tibble(df$diagnosis), as_tibble(preproc_pca_df$x))
GGally::ggpairs(df_pcs, columns = 2:4, ggplot2::aes(color = value))

12.3. UNDERSTAND THE DATA 127

Cor : 1.69e−16

B: 0.554

M: 0.0317

Cor : −3.54e−16

B: −0.0958

M: −0.284

Cor : 2.37e−16

B: −0.335

M: 0.346

PC1 PC2 PC3
P

C
1

P
C

2
P

C
3

−15 −10 −5 0 5 −10 −5 0 5 −5 0 5 10

0.0

0.1

0.2

−10

−5

0

5

−5

0

5

10

Let’s do the same exercise with our second df, the one where we removed the highly correlated
predictors.
preproc_pca_df2 <- prcomp(df2, scale = TRUE, center = TRUE)
summary(preproc_pca_df2)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 3.2051 2.1175 1.46634 1.09037 0.95215 0.90087
Proportion of Variance 0.4669 0.2038 0.09773 0.05404 0.04121 0.03689
Cumulative Proportion 0.4669 0.6707 0.76847 0.82251 0.86372 0.90061
PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 0.77121 0.56374 0.5530 0.51130 0.45605 0.36602
Proportion of Variance 0.02703 0.01445 0.0139 0.01188 0.00945 0.00609
Cumulative Proportion 0.92764 0.94209 0.9560 0.96787 0.97732 0.98341
PC13 PC14 PC15 PC16 PC17 PC18 PC19
Standard deviation 0.31602 0.28856 0.2152 0.2098 0.16346 0.1558 0.1486
Proportion of Variance 0.00454 0.00378 0.0021 0.0020 0.00121 0.0011 0.0010
Cumulative Proportion 0.98795 0.99174 0.9938 0.9958 0.99706 0.9982 0.9992
PC20 PC21 PC22
Standard deviation 0.09768 0.08667 0.03692
Proportion of Variance 0.00043 0.00034 0.00006
Cumulative Proportion 0.99960 0.99994 1.00000

128 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

pca_df2_var <- preproc_pca_df2$sdev^2

proportion of variance explained
pve_df2 <- pca_df2_var / sum(pca_df2_var)
cum_pve_df2 <- cumsum(pve_df2)
pve_table_df2 <- tibble(comp = seq(1:ncol(df2)), pve_df2, cum_pve_df2)

ggplot(pve_table_df2, aes(x = comp, y = cum_pve_df2)) +
geom_point() +
geom_abline(intercept = 0.95, color = "red", slope = 0) +
labs(x = "Number of components", y = "Cumulative Variance")

0.6

0.8

1.0

0 5 10 15 20

Number of components

C
um

ul
at

iv
e

V
ar

ia
nc

e

In this case, around 8 PC’s explained 95% of the variance.

12.3.2.2 Using LDA

The advantage of using LDA is that it takes into consideration the different class.
preproc_lda_df <- MASS::lda(diagnosis ~., data = df, center = TRUE, scale = TRUE)
preproc_lda_df

Call:

12.3. UNDERSTAND THE DATA 129

lda(diagnosis ~ ., data = df, center = TRUE, scale = TRUE)
##
Prior probabilities of groups:
B M
0.6274165 0.3725835
##
Group means:
id radius_mean texture_mean perimeter_mean area_mean
B 26543825 12.14652 17.91476 78.07541 462.7902
M 36818050 17.46283 21.60491 115.36538 978.3764
smoothness_mean compactness_mean concavity_mean concave_points_mean
B 0.09247765 0.08008462 0.04605762 0.02571741
M 0.10289849 0.14518778 0.16077472 0.08799000
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
B 0.174186 0.06286739 0.2840824 1.220380 2.000321
M 0.192909 0.06268009 0.6090825 1.210915 4.323929
area_se smoothness_se compactness_se concavity_se concave_points_se
B 21.13515 0.007195902 0.02143825 0.02599674 0.009857653
M 72.67241 0.006780094 0.03228117 0.04182401 0.015060472
symmetry_se fractal_dimension_se radius_worst texture_worst
B 0.02058381 0.003636051 13.37980 23.51507
M 0.02047240 0.004062406 21.13481 29.31821
perimeter_worst area_worst smoothness_worst compactness_worst
B 87.00594 558.8994 0.1249595 0.1826725
M 141.37033 1422.2863 0.1448452 0.3748241
concavity_worst concave_points_worst symmetry_worst
B 0.1662377 0.07444434 0.2702459
M 0.4506056 0.18223731 0.3234679
fractal_dimension_worst
B 0.07944207
M 0.09152995
##
Coefficients of linear discriminants:
LD1
id -2.512117e-10
radius_mean -1.080876e+00
texture_mean 2.338408e-02
perimeter_mean 1.172707e-01
area_mean 1.595690e-03
smoothness_mean 5.251575e-01
compactness_mean -2.094197e+01
concavity_mean 6.955923e+00
concave_points_mean 1.047567e+01
symmetry_mean 4.938898e-01
fractal_dimension_mean -5.937663e-02

130 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

radius_se 2.101503e+00
texture_se -3.979869e-02
perimeter_se -1.121814e-01
area_se -4.083504e-03
smoothness_se 7.987663e+01
compactness_se 1.387026e-01
concavity_se -1.768261e+01
concave_points_se 5.350520e+01
symmetry_se 8.143611e+00
fractal_dimension_se -3.431356e+01
radius_worst 9.677207e-01
texture_worst 3.540591e-02
perimeter_worst -1.204507e-02
area_worst -5.012127e-03
smoothness_worst 2.612258e+00
compactness_worst 3.636892e-01
concavity_worst 1.880699e+00
concave_points_worst 2.218189e+00
symmetry_worst 2.783102e+00
fractal_dimension_worst 2.117830e+01
Making a df out of the LDA for visualization purpose.
predict_lda_df <- predict(preproc_lda_df, df)$x %>%

as_data_frame() %>%
cbind(diagnosis = df$diagnosis)

glimpse(predict_lda_df)

Observations: 569
Variables: 2
$ LD1 <dbl> 3.3257395, 2.3298023, 3.7416859, 4.0209903, 2.275428...
$ diagnosis <fctr> M, M, M, M, M, M, M, M, M, M, M, M, M, M, M, M, M, ...

12.3.3 Model the data

Let’s first create a testing and training set using caret
set.seed(1815)
df3 <- cbind(diagnosis = df$diagnosis, df2)
df_sampling_index <- createDataPartition(df3$diagnosis, times = 1, p = 0.8, list = FALSE)
df_training <- df3[df_sampling_index,]
df_testing <- df3[-df_sampling_index,]
df_control <- trainControl(method="cv",

number = 15,
classProbs = TRUE,

12.3. UNDERSTAND THE DATA 131

summaryFunction = twoClassSummary)

12.3.3.1 Logistic regression

Our first model is doing logistic regression on df2, the data frame where we took away the
highly correlated variables.
model_logreg_df <- train(diagnosis ~., data = df_training, method = "glm",

metric = "ROC", preProcess = c("scale", "center"),
trControl = df_control)

prediction_logreg_df <- predict(model_logreg_df, df_testing)
cm_logreg_df <- confusionMatrix(prediction_logreg_df, df_testing$diagnosis, positive = "M")
cm_logreg_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 71 2
M 0 40
##
Accuracy : 0.9823
95% CI : (0.9375, 0.9978)
No Information Rate : 0.6283
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9617
Mcnemar's Test P-Value : 0.4795
##
Sensitivity : 0.9524
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9726
Prevalence : 0.3717
Detection Rate : 0.3540
Detection Prevalence : 0.3540
Balanced Accuracy : 0.9762
##
'Positive' Class : M
##

132 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

12.3.3.2 Random Forest

Our second model uses random forest. Similarly, we using the df2 data frame, the one where
we took away the highly correlated variables.
model_rf_df <- train(diagnosis ~., data = df_training,

method = "rf",
metric = 'ROC',
trControl = df_control)

prediction_rf_df <- predict(model_rf_df, df_testing)
cm_rf_df <- confusionMatrix(prediction_rf_df, df_testing$diagnosis, positive = "M")
cm_rf_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 71 3
M 0 39
##
Accuracy : 0.9735
95% CI : (0.9244, 0.9945)
No Information Rate : 0.6283
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9423
Mcnemar's Test P-Value : 0.2482
##
Sensitivity : 0.9286
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9595
Prevalence : 0.3717
Detection Rate : 0.3451
Detection Prevalence : 0.3451
Balanced Accuracy : 0.9643
##
'Positive' Class : M
##

Let’s make some diagnostic plots.

12.3. UNDERSTAND THE DATA 133

plot(model_rf_df)

#Randomly Selected Predictors

R
O

C
 (

C
ro

ss
−

V
al

id
at

io
n)

0.984

0.985

0.986

0.987

0.988

0.989

5 10 15 20

plot(model_rf_df$finalModel)

0 100 200 300 400 500

0.
04

0.
06

0.
08

0.
10

0.
12

model_rf_df$finalModel

trees

E
rr

or

134 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

varImpPlot(model_rf_df$finalModel, sort = TRUE,
n.var = 10, main = "The 10 variables with the most predictive power")

perimeter_se

concavity_worst

concavity_mean

perimeter_mean

area_mean

area_se

concave_points_mean

concave_points_worst

area_worst

perimeter_worst

0 5 10 15 20 25

The 10 variables with the most predictive power

MeanDecreaseGini

12.3.3.3 KNN

model_knn_df <- train(diagnosis ~., data = df_training,
method = "knn",
metric = "ROC",
preProcess = c("scale", "center"),
trControl = df_control,
tuneLength =31)

plot(model_knn_df)

12.3. UNDERSTAND THE DATA 135

#Neighbors

R
O

C
 (

C
ro

ss
−

V
al

id
at

io
n)

0.982

0.984

0.986

0.988

10 20 30 40 50 60

prediction_knn_df <- predict(model_knn_df, df_testing)
cm_knn_df <- confusionMatrix(prediction_knn_df, df_testing$diagnosis, positive = "M")
cm_knn_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 70 6
M 1 36
##
Accuracy : 0.9381
95% CI : (0.8765, 0.9747)
No Information Rate : 0.6283
P-Value [Acc > NIR] : 1.718e-14
##
Kappa : 0.8641
Mcnemar's Test P-Value : 0.1306
##
Sensitivity : 0.8571
Specificity : 0.9859
Pos Pred Value : 0.9730
Neg Pred Value : 0.9211
Prevalence : 0.3717

136 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

Detection Rate : 0.3186
Detection Prevalence : 0.3274
Balanced Accuracy : 0.9215
##
'Positive' Class : M
##

12.3.3.4 Support Vector Machine

set.seed(1815)
model_svm_df <- train(diagnosis ~., data = df_training, method = "svmLinear",

metric = "ROC",
preProcess = c("scale", "center"),
trace = FALSE,
trControl = df_control)

prediction_svm_df <- predict(model_svm_df, df_testing)
cm_svm_df <- confusionMatrix(prediction_svm_df, df_testing$diagnosis, positive = "M")
cm_svm_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 71 2
M 0 40
##
Accuracy : 0.9823
95% CI : (0.9375, 0.9978)
No Information Rate : 0.6283
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9617
Mcnemar's Test P-Value : 0.4795
##
Sensitivity : 0.9524
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9726
Prevalence : 0.3717
Detection Rate : 0.3540
Detection Prevalence : 0.3540
Balanced Accuracy : 0.9762
##

12.3. UNDERSTAND THE DATA 137

'Positive' Class : M
##

This is is an OK model.
I am wondering though if we could achieve better results with SVM when doing it on the
PCA data set.
set.seed(1815)
df_control_pca <- trainControl(method="cv",

number = 15,
preProcOptions = list(thresh = 0.9), # threshold for pca preprocess
classProbs = TRUE,
summaryFunction = twoClassSummary)

model_svm_pca_df <- train(diagnosis~.,
df_training, method = "svmLinear", metric = "ROC",
preProcess = c('center', 'scale', "pca"),
trControl = df_control_pca)

prediction_svm_pca_df <- predict(model_svm_pca_df, df_testing)
cm_svm_pca_df <- confusionMatrix(prediction_svm_pca_df, df_testing$diagnosis, positive = "M")
cm_svm_pca_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 70 2
M 1 40
##
Accuracy : 0.9735
95% CI : (0.9244, 0.9945)
No Information Rate : 0.6283
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9429
Mcnemar's Test P-Value : 1
##
Sensitivity : 0.9524
Specificity : 0.9859
Pos Pred Value : 0.9756
Neg Pred Value : 0.9722
Prevalence : 0.3717
Detection Rate : 0.3540
Detection Prevalence : 0.3628
Balanced Accuracy : 0.9691

138 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

##
'Positive' Class : M
##

That’s already better. The treshold parameter is what we needed to play with.

12.3.3.5 Neural Network with LDA

To use the LDA pre-processing step, we need to also create the same training and testing
set.
lda_training <- predict_lda_df[df_sampling_index,]
lda_testing <- predict_lda_df[-df_sampling_index,]
model_nnetlda_df <- train(diagnosis ~., lda_training,

method = "nnet",
metric = "ROC",
preProcess = c("center", "scale"),
tuneLength = 10,
trace = FALSE,
trControl = df_control)

prediction_nnetlda_df <- predict(model_nnetlda_df, lda_testing)
cm_nnetlda_df <- confusionMatrix(prediction_nnetlda_df, lda_testing$diagnosis, positive = "M")
cm_nnetlda_df

Confusion Matrix and Statistics
##
Reference
Prediction B M
B 71 1
M 0 41
##
Accuracy : 0.9912
95% CI : (0.9517, 0.9998)
No Information Rate : 0.6283
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.981
Mcnemar's Test P-Value : 1
##
Sensitivity : 0.9762
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.9861
Prevalence : 0.3717

12.3. UNDERSTAND THE DATA 139

Detection Rate : 0.3628
Detection Prevalence : 0.3628
Balanced Accuracy : 0.9881
##
'Positive' Class : M
##

12.3.3.6 Models evaluation

model_list <- list(logisic = model_logreg_df, rf = model_rf_df,
svm = model_svm_df, SVM_with_PCA = model_svm_pca_df,
Neural_with_LDA = model_nnetlda_df)

results <- resamples(model_list)

summary(results)

##
Call:
summary.resamples(object = results)
##
Models: logisic, rf, svm, SVM_with_PCA, Neural_with_LDA
Number of resamples: 15
##
ROC
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
logisic 0.8827751 0.9660088 1 0.9744418 1 1 0
rf 0.9497608 0.9808612 1 0.9889952 1 1 0
svm 0.9545455 0.9884370 1 0.9928761 1 1 0
SVM_with_PCA 0.9409091 0.9952153 1 0.9932430 1 1 0
Neural_with_LDA 0.9692982 0.9976077 1 0.9954014 1 1 0
##
Sens
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
logisic 0.8947368 0.9473684 0.9473684 0.9615789 1 1 0
rf 0.8947368 0.9473684 1.0000000 0.9721053 1 1 0
svm 0.9473684 1.0000000 1.0000000 0.9929825 1 1 0
SVM_with_PCA 0.9473684 1.0000000 1.0000000 0.9894737 1 1 0
Neural_with_LDA 0.8947368 1.0000000 1.0000000 0.9859649 1 1 0
##
Spec
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
logisic 0.8181818 0.9128788 1.0000000 0.9530303 1 1 0
rf 0.6363636 0.9090909 0.9090909 0.9095960 1 1 0
svm 0.8181818 0.9090909 0.9166667 0.9343434 1 1 0

140 CHAPTER 12. CASE STUDY - WISCONSIN BREAST CANCER

SVM_with_PCA 0.8181818 0.9090909 1.0000000 0.9580808 1 1 0
Neural_with_LDA 0.8181818 0.9128788 1.0000000 0.9525253 1 1 0
bwplot(results, metric = "ROC")

ROC

logisic

Neural_with_LDA

rf

svm

SVM_with_PCA

0.88 0.90 0.92 0.94 0.96 0.98 1.00

#dotplot(results)

The logistic has to much variability for it to be reliable. The Random Forest and Neural
Network with LDA pre-processing are giving the best results. The ROC metric measure
the auc of the roc curve of each model. This metric is independent of any threshold. Let’s
remember how these models result with the testing dataset. Prediction classes are obtained
by default with a threshold of 0.5 which could not be the best with an unbalanced dataset
like this.
cm_list <- list(cm_rf = cm_rf_df, cm_svm = cm_svm_df,

cm_logisic = cm_logreg_df, cm_nnet_LDA = cm_nnetlda_df)
results <- map_df(cm_list, function(x) x$byClass) %>% as_tibble() %>%

mutate(stat = names(cm_rf_df$byClass))

results

A tibble: 11 x 5
cm_rf cm_svm cm_logisic cm_nnet_LDA stat
<dbl> <dbl> <dbl> <dbl> <chr>
1 0.9285714 0.9523810 0.9523810 0.9761905 Sensitivity
2 1.0000000 1.0000000 1.0000000 1.0000000 Specificity

12.4. REFERENCES 141

3 1.0000000 1.0000000 1.0000000 1.0000000 Pos Pred Value
4 0.9594595 0.9726027 0.9726027 0.9861111 Neg Pred Value
5 1.0000000 1.0000000 1.0000000 1.0000000 Precision
6 0.9285714 0.9523810 0.9523810 0.9761905 Recall
7 0.9629630 0.9756098 0.9756098 0.9879518 F1
8 0.3716814 0.3716814 0.3716814 0.3716814 Prevalence
9 0.3451327 0.3539823 0.3539823 0.3628319 Detection Rate
10 0.3451327 0.3539823 0.3539823 0.3628319 Detection Prevalence
11 0.9642857 0.9761905 0.9761905 0.9880952 Balanced Accuracy

The best results for sensitivity (detection of breast cases) is LDA_NNET which also has a
great F1 score.

12.4 References

A useful popular kernel on this dataset on Kaggle Another one, also on Kaggle And another
one, especially nice to compare models.

https://www.kaggle.com/lbronchal/breast-cancer-dataset-analysis
https://www.kaggle.com/sonicboom8/breast-cancer-data-with-logistic-randomforest
https://www.kaggle.com/murnix/cluster-rf-boosting-svm-accuracy-97-auc-0-96/notebook
https://www.kaggle.com/murnix/cluster-rf-boosting-svm-accuracy-97-auc-0-96/notebook

Index

Breast cancer dataset, 119

caret, 54
Cross validation, 55

KNN, 55, 59
KNN model, 56, 59

mtcars, 13

Normalisation, 54

Prostate cancer dataset, 53

Q-Q plot, 12

Shapiro-Wilk test, 12
Splitting dataset, 54

T test, 13
Test of normality, 11

Wine Quality dataset, 57

142

Bibliography

143

	Prerequisites
	Pre-requisite and conventions
	Organization

	Tests and inferences
	Assumption of normality
	T-tests

	Multiple Linear Regression
	Single variable regression
	Multi-variables regression

	Logistic Regression
	Introduction
	The logistic equation.
	Performance of Logistic Regression Model
	Setting up
	Example 1 - Graduate Admission
	Example 2 - Diabetes
	References

	Softmax and multinomial regressions
	Multinomial Logistic Regression
	References

	KNN - K Nearest Neighbour
	Example 1. Prostate Cancer dataset
	Example 2. Wine dataset
	References

	Principal Component Analysis
	PCA on an easy example.
	References.

	Trees, Random forests and Classification
	Introduction
	First example.
	Second Example.
	How does a tree decide where to split?
	Third example.
	References

	Model Evaluation
	Biais variance tradeoff
	Bagging
	Cross Validation

	Case Study - Predicting Survivalship on the Titanic
	Import the data.
	Tidy the data
	Understand the data
	A. Visualize with cabins.
	B. Transform Dealing with missing data.
	References.

	Case Study - Mushrooms Classification
	Import the data
	Tidy the data
	Understand the data
	Communication

	Case Study - Wisconsin Breast Cancer
	Import the data
	Tidy the data
	Understand the data
	References

